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1 INTRODUCTION 
 
Mining and mineral processing industries throughout the world rely on the efficient 
transportation of bulk solid.  Belt conveyors have been used for the transportation of bulk solid 
over relatively short distances for many years, but with significant developments in analytical 
procedures to describe the dynamic properties of belt conveying systems, the utilisation of 
belt conveyors for long distance overland transportation is becoming more economically 
viable.  Belt conveyor installations are becoming progressively longer and belt speeds 
significantly faster, and as these trends continue it becomes increasingly important that the 
motion resistances associated with the operation of belt conveyors be minimised for optimum 
performance and efficiency.  In the energy conscious world in which we live, no longer is it 
acceptable for a belt conveyor to simply transport bulk solid from one point to another, the 
operation must be economically viable, environmentally friendly and energy efficient. 
 
The energy consumed in raising bulk solid from one level to another is typically a parameter 
that cannot be easily changed, and is usually determined by plant constraints or the terrain 
over which the conveyor is travelling.  As a result the primary area of focus in order to 
minimise power consumption is the resistances associated with the motion of the belt 
conveyor.  The energy consumed during the operation of a long horizontal belt conveyor is 
primarily due to the frictional resistance that occurs along the length of the conveyor.  This 
resistance is known as the main resistance and includes the belt and bulk solid flexure 
resistance, the rotational resistance of the idler rolls, and the indentation rolling resistance of 
the conveyor belt.  
 
This paper will discuss each component of the main resistance and provide details of 
methods to calculate the contribution of each component.  A finite difference solution that 
applies orthotropic plate mechanics is described to calculate the deflection of the conveyor 
belt due to the loading induced from the weight of the belt and bulk solid, and the loading 
induced from the relative movement of the bulk solid.  Given the displacement of the belt and 
bulk solid the flexure resistance of each component can be calculated.  The rotational 
resistance of the idler rolls is briefly discussed and an apparatus to measure the resistance is 
presented.  A finite element model is then discussed which calculates the indentation rolling 
resistance occurring at each idler set from the viscoelastic properties of the bottom cover of 
the conveyor belt.   
 

 

2 BELT AND BULK SOLID FLEXURE RESISTANCE 

As the conveyor belt moves from one idler set to the next the belt and bulk solid being 
conveyed undergo deflections due to the sag of the belt.  Flexure resistance of the conveyor 
belt and bulk solid occurs due to the cyclic transverse and longitudinal movement as the belt 
progresses from one idler set to the next.  The losses attributable to the belt flexure 
resistance occur due to the hysteresis losses associated with the induced bending of the 
conveyor belt, while the flexure resistance of the bulk solid occurs due to internal friction and 
friction at the belt interface.  
 
In order to calculate the flexure resistance of the belt and bulk solid an accurate prediction of 
the deflection of the troughed belt between idler sets is required.  Orthotropic plate mechanics 
is used to model the belt, which in addition to longitudinal tensile loading is also subjected to a 
pressure distribution resulting from the weight of the belt and bulk solid and loading induced 
from the relative movement of the bulk solid. 
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2.1 Orthotropic Plate Mechanics 

 
A conveyor belt may be considered to consist of three elements which include the top and 
bottom covers and a carcass that carries the tensile load.  For the purpose of analysis the 
conveyor belt may be considered an elastic homogeneous orthotropic medium subjected to 
forces, Q per unit length and moments, M per unit length that cause the belt to bend, in 
addition to in-plane (membrane) forces acting on the middle surface.  The theory of 
orthotropic plate mechanics can therefore be applied to calculate the deflection of the belt 
between idler sets, which was first adopted by Harrison [1] to analyse bending vibrations in 
steel cord conveyor belts.   
 
Fig.1 details a differential element of belt, dx by dy subjected to a pressure distribution, Pz 

(x,y) and a longitudinal tensile force, Tx per unit length.  While transverse and shear in-plane 
forces will also be present due to friction between the belt and bulk solid these are considered 
negligible and will not be included in the present analysis.  The pressure distribution acting on 
the carry side results from the self-weight of the belt and the loading induced by the weight 
and relative movement of the conveyed bulk solid.  The pressure distribution acting on the 
return side is due to the weight of the belt alone.  Due to the action of the in-plane force, Tx 
resulting from longitudinal belt tension the differential element will develop some curvature 
resulting in a projection of the force Tx acting on the z-axis, as shown in Fig.1.   
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1: Differential belt element 

 
Equilibrium analysis of the differential element provides the governing differential equation for 
the belt deflection, w, as 
 

2

2

4

4

22

4

4

4

x 2D
x

w
Ty,xP

y

w
D

yx

w
H

x

w
xzy                                     (1) 

 

Where; yxxyxy DDDH 42           (2) 

 

Dx and Dy are flexural rigidities of the belt, Dxy the torsional rigidity, while x and y are 
Poisson’s ratios.  The flexural rigidities can be approximated from the bending moduli or 
measured experimentally using techniques described by Timoshenko [2].   
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The governing differential equation for the belt allows the calculation of a deflection profile 
based upon the orthotropic properties of the conveyor belt and the induced loading.  Due to 
the non-uniform pressure distribution induced by the relative movement of the bulk solid the 
solution of the governing differential equation approximating the deflection of the belt is not 
possible using classical plate mechanics.  Consequently a numerical approximation has been 
developed using the method of finite differences.  In particular, central differences will be used 
to replace the derivatives in the governing differential equation of the belt in order to 
approximate the deflection of the belt w(x,y) at selected nodes within the finite difference 
mesh. 
 
 
2.2 Finite Difference Solution 

 
The finite difference method involves replacing the derivatives in the governing differential 
equation by their central difference approximations.  The span of conveyor belt between idler 
sets is modelled as a mesh of discrete nodes as shown in Fig.2.  The governing differential 
equation, in conjunction with the imposed boundary conditions is applied at each node within 
the allocated mesh.  The deflection of the belt is then refined to the solution of a system of 
simultaneous equations which is solved numerically.   
 

 

Fig.2: Modelled span of conveyor belt showing allocated boundary conditions 

 
The general finite difference mesh pattern for the belt analysis in relation to the pivotal node 

(m,n) is shown in Fig.3.  An equally spaced square mesh (ie: x= y= xy) is assumed in order 
to simplify the analysis.  Substituting the central difference relations into Eq. (1) the finite 
difference representation of the belt deflection at the pivotal node (m,n) is then given by 
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Fig.3: General finite difference mesh pattern for conveyor belt at pivotal node (m,n) 
 
Due to the transverse symmetry of the conveyor belt under general conveying conditions the 
boundary conditions are selected to model only one half of the belt, as shown in Fig.2.  The 
outer edge of the belt is analysed as a free edge, while the edge along the centreline of the 
belt is treated as a guided or sliding support to represent the continuation of the belt across 
the boundary.  The belt directly above the idler rolls represented by m=1 and m=mmax are 
analysed as fixed edges and modelled as pseudo continuous by mirroring nodes across the 
boundaries to simulate the continuation of the belt directly before and after the modelled span 
of belt.  From the finite difference representation of the belt deflection given by Eq. (3) and the 
nominated boundary conditions a system of simultaneous equations is derived to model the 
deflection of the belt.  The system of simultaneous equations is then solved numerically. 
 
 
2.3 Pressure Distribution due to Bulk Solid 

 
Calculating the pressure distribution due to the self-weight and relative movement of the bulk 
solid is essential in order to calculate the belt deflection and therefore the flexure resistance.  
The cyclic transverse and longitudinal deformation of the bulk solid generates a complex 
problem to predict the transition and magnitudes of the induced stress states.   
 
As an element of bulk solid moves from one idler set to the next the bulk solid experiences 
variations in height and cross-sectional shape due to the sag of the belt.  As the belt 
progresses from one idler set to the next the bulk solid undergoes cyclic expansion and 
contraction in the transverse direction, as shown in Fig.4.  When the belt is supported by an 
idler set, as indicated by positions A and E, the belt and bulk solid are forced to conform to 
the troughing profile resulting in transverse compressive stresses.  Upon leaving the idler and 
moving to position B, the troughed belt opens under the action of gravity allowing the bulk 
solid to relax transversely forming an active stress state.  Longitudinally however the bulk 
solid is undergoing compressive stresses due to the contraction of the bulk solid arising from 
the longitudinal sag of the belt.  Upon reaching approximately half to two thirds the carry side 
idler spacing, ac as indicated by position C, the stress states theoretically reverse.  A passive 
stress state is induced in the transverse direction resulting from the compressive stresses due 
to the narrowing profile of the belt, while the bulk solid in the longitudinal direction dilates 
generating an active stress state as it moves away from the point of maximum sag. 
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Fig.4: Active and passive stress states 
 
Krause and Hettler [3] applied Coulomb’s earth pressure theory to calculate the forces acting 
on the conveyor belt due to the active and passive stress states.  Fig.5 details the force 
analysis applied for the active stress state, which provides an equilibrium analysis of the 
forces acting on the wedge at the point of sliding to determine the normal force, Fsna acting on 
the belt due to the active stress state. 
 

 
 
 

Fig.5: Normal force analysis for the active stress case 
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Krause and Hettler [3] derive the transverse active pressure factor, Kta for the opening of the 

conveyor belt in terms of the troughing angle , the bulk solid internal friction angle i, the belt 

and bulk solid friction angle w, and the conveyor surcharge angle .  The pressure factor, Kta 
is given by 
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Similarly, the transverse passive pressure factor for the closing of the conveyor belt, Ktp is 
given by 
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The normal force per unit length, Fsn acting on the side idler roll due to the bulk solid is then 
approximated as 
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Where ρ is bulk density, Lss is the length of bulk solid in contact with the inclined side of the 
conveyor belt, and the active and passive stress states are assumed to act over half the idler 
spacing. 
 
Rather than calculating the resultant normal force acting on the conveyor belt due to the 
induced stress states, as shown in Fig.5 the present analysis requires the pressure 
distribution over the surface area of the conveyor belt.   The  pressure due to the bulk solid, 
(Pz_bs)m,n acting on each node (m,n) along the inclined sides of the conveyor belt (ie; njunct < 

n  nmax ) is shown in Fig.6, which represents the transverse cross-section at longitudinal 
position m.   The shaded region parallel to the failure plane details the segment of bulk solid 

of width ∆ xy by length ∆xy acting on each node along the inclined side of the belt.   
  

 
Fig.6: Pressure distribution acting on inclined side of conveyor belt 
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The pressure distribution is derived from the normal force, (Fsn)m,n acting on each node (m,n) 
and is given by 
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Where the transverse pressure factor, Kt is equal to Kta or Ktp for the active and passive stress 
states respectively and (h)n is the projected height of bulk solid above the node as shown in 
Fig.6.  To accommodate for the dynamic loading effects the acceleration due to the rate of 
belt deflection at each node, (a)m,n is calculated from the central difference approximation and 
is given by 
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where;
bv

xy
t   and  vb = belt speed       

 
The pressure distribution acting on the conveyor belt directly above the centre idler roll is then 

calculated from a vertical force balance.  The normal force, (Fcn)m per length xy acting on the 
conveyor belt above the centre idler roll at longitudinal position m, is calculated by summing 
the vertical forces acting on each node and is equal to 
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Where qm is the mass per unit length of bulk solid.   
 
The normal force distribution across the centre of the belt is distributed according to the ratio 
of the cross-sectional area of bulk solid above each node to the total cross-sectional area of 
bulk solid above the centre idler and is given by 
 

tanLtancossinLL

nxycosLLtansinLxy
FF

cssscs

sscsss
mcnn,mcn 2

8
1

2
1

2
1

2
1

          for; 1  n  njunct    (10) 

 
Where Lcs is the projected contact length of the centre idler roll shown in Fig.6.  The pressure 

distribution across the centre of the belt (ie: 1  n  njunct) due to the bulk solid is then equal 
to 
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Applying the pressure distributions given in Eqs. (7) and (11) into Eq. (3) over the relevant 
intervals allows the deflection of the conveyor belt at each node, wm,n to be calculated from 
the derived system of simultaneous equations.  The process involves an iterative solution 
since the acceleration experienced at each node, (a)m,n is dependent on the rate of deflection, 
which in turn determines the  pressure distribution and thereby the deflection. 
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2.4 Bulk Solid Flexure Resistance 

 
For the purpose of analysis and explanation the bulk solid flexure resistance can be 
considered to consist of both transverse and longitudinal components.  The losses 
attributable to the transverse flexure of the bulk solid are approximated by calculating the 
difference between the work done in deflecting the bulk solid during the active and passive 
stress states, as noted by Spaans [4].  Predicting the transition between the active and 
passive stress states is complex and is often approximated as half the idler spacing, ac.  A 
significant benefit of the finite difference model is the ability to accurately predict the transition 
between the opening and closing belt, which is calculated from the point of maximum sag 
along the inclined side of the conveyor belt.  The location of the transition is signified by 
m=mtrans.  For the present analysis the transverse flexure resistance of the bulk solid, 
Ftrans_flex_bs acting over the idler spacing, ac is approximated by 
 

 
maxn

njunctn
mtrans

m

n,mwtann,m

maxm

mtransm

n,mwtpnn,m

c
bs_f lex_trans

wcosKnjunctnhsinaxy

wcosKnjunctnhsinaxy

a
F

1
1

1

2 

2
1

2 

2
1

2               (12) 

 
The longitudinal flexure resistance of the bulk solid is also calculated from the difference 
between the work done in deflecting the bulk solid during the active and passive stress states.  
Spaans [4] provides an approximation for the longitudinal flexure resistance of the bulk solid 
for a flat belt by calculating the energy required to deform by angular rotation, a volume 
element subjected to a linearly increasing pressure.  For the present analysis the angular 

deflection, ( )m,n that the element of bulk solid is subjected to is determined from the radius of 
curvature, (r)m,n  and is given by   
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and, w m,n and w m,n are approximated by the finite difference derivatives. 
 
For a troughed belt the volume of bulk solid considered when calculating the longitudinal 
flexure resistance is restricted to the cross-section above the centre idler roll.  The 
longitudinal flexure resistance of the bulk solid, Flong_flex_bs is then approximated as 
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Klp and Kla represent the longitudinal passive and active pressure factors and (hbs)n is the 
height of the bulk solid above the centre idler roll.  The total bulk solid flexure resistance for 
the idler spacing is calculated from the sum of Eqs. (12) and (15). 
 
 
2.5 Conveyor Belt Flexure Resistance 

 
The flexure resistance of the conveyor belt occurs due to the asymmetric longitudinal 
deflection of the belt coupled with hysteresis bending losses.  This section offers an 
approximation to the flexure resistance for the carry side based upon the calculated belt 
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deflections and induced bending moments.  Similar calculations may also be made for the 
returns side conveyor belt.  
 
Spaans [4] describes a theoretical model to predict the flexure resistance for a flat belt in 
which the hysteresis loss of the belt is measured under a dynamic bending moment.  The 
flexure resistance per idler set is given by  
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Where the energy loss factor due to bending is given by,  and lies between 0.4 to 0.9 for 

most belts, with  = 0.6 commonly used.  M1 and M2 are the bending moments occurring 
within the belt at the point directly above the idler roll and at the point of maximum sag 
respectively.  The longitudinal profile of the flat belt is approximated by two discrete radii of 
curvature, the radius of curvature over the idler roll, r1 and the radius of curvature at the point 
of maximum sag, r2.    
 
Rather than approximating the longitudinal profile of the conveyor belt as two discrete radii 
the deflection profile for the troughed belt is derived from the finite difference solution.  The 
total flexure resistance of the belt as it moves from one idler set to the next is approximated 
by summing the flexure resistance occurring at each node along the length of the conveyor 
belt, which may be expressed as 
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The finite difference approximation of the conveyor belt deflection provides each of these 
components for each node within the finite difference mesh.  The radius of curvature (r)m,n is 
given by Eq. (14) while the finite difference form of the longitudinal bending moment (Mx)m,n, 
acting on node (m,n) is given by 
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2.6 Overview of Flexure Resistance Calculations 

 
The preceding analysis provides an approximation for the belt and bulk solid flexure 
resistance for a troughed conveyor.  A finite difference solution using orthotropic plate 
mechanics is used to model the deflection of the conveyor belt while subjected to a tensile 
load and a non-uniform pressure distribution.   The pressure distribution applied to the belt 
results from the self-weight of the belt and the loading induced by the weight and movement 
of the conveyed bulk solid.  The flexure resistance of the bulk solid is calculated from the 
relative movement of the bulk solid in both the transverse and longitudinal directions.  While 
the sum of the quotient of the bending moment and the radius of curvature for each node is 
calculated and multiplied by a hysteresis loss factor for bending to give the total belt flexure 
resistance for the modelled belt span. 
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3 IDLER ROTATIONAL RESISTANCE 
 
The rotational resistance of the idler rolls consists of the rotational resistance of the bearings 
and seals, and may be considered to be dependent on the following parameters: 
 

 Bearing type, usually deep groove ball or tapered roller 

 Bearing pre-load when considering tapered roller bearings 

 Seal type and configuration 

 Grease viscosity 

 Bearing and ambient temperature 

 Rotational speed 

 Vertical and axial load 
 
Due to the relative ease of measuring the rotational resistance of an idler roll it is preferable to 
measure the resistance of the idler roll under simulated operating conditions, such as the 
equivalent belt speed, ambient temperature and vertical load.  Fig.7 shows a schematic of an 
apparatus developed by the author to measure the rotational resistance of idler rolls.  The 
idler to be tested is supported on knife-edge supports that enable the vertical force at each 
end of the shaft to be measured independently.  Collars are attached to each end of the idler 
shaft that rest on the knife-edge supports and allow the shaft to rotate freely about the knife-
edge.  A flat drive belt applies a vertical load and a driving torque to the idler through a 
variable speed drive which can be ramped up to the required belt speed to represent the 
starting characteristics of the conveyor.  The resistance torque is continuously monitored by 
measuring the force resisting rotation about the knife-edge supports.  The measurement 
apparatus is housed within a temperature controlled room where the ambient temperature 
can be set from -10

o
C to +60

o
C.  Additionally, if required the bearing temperature can be 

monitored using a thermocouple located beneath the inner race of the bearing. 

Fig.7: Idler rotational resistance measurement apparatus. 
 
 
 
 
 
 
 



 

Copyright is vested with IMHC    
11 

If idler rolling resistance measurements are not available then theoretical approximations may 
be made by considering the contribution of each component.   
 
 
3.1 Labyrinth Seal Viscous Drag 

 
Grease filled labyrinth seals form the boundary between dust and water ingress into the 
rolling elements of the bearings. The labyrinth seals are usually fully packed with lubricating 
grease to optimise the sealing efficiency of the labyrinth.  The lubricating grease serves a dual 
purpose, to lubricate the rolling elements of the bearings and to provide an effective seal from 
the ingress of contaminants.  The labyrinth consists of a stationary section fitted to the shaft of 
the idler roll, and a rotating part housed into the idler shell.  Due to the nature of the sealing 
mechanism viscous drag is generated due to the shearing of the grease between the layers of 
rotating and stationary surfaces. The magnitude of the retarding moment depends on the 
viscosity of the lubricating grease which is temperature dependent, the rotational speed of the 
idler and physical configuration of the labyrinth seal.  The lubricating grease may be 
considered a Newtonian fluid under normal operating conditions and the resistance to rotation 
approximated using a force momentum balance for a Newtonian fluid.   
 
 
3.2 Ball and Roller Bearing Friction 

 
Bearing friction is generated due to the elastic hysteresis formed within the contact zone.  The 
pressure distribution within the contact zone is asymmetric since the surface pressure is 
higher leading the centreline of the rolling element than lagging the centreline. Additionally, 
the dampening of elastic vibrations that occur due to uneven pressure at the contact zone 
also adds to bearing friction, as noted by Palmeren [5].  
 
Bearings operating in an idler roll of a convention belt conveyor will experience a combination 
of hydrodynamic and boundary lubrication. Therefore the total friction moment is determined 
from the sum of the no-load and load dependent moments.  The reader is referred to the 
bearing manufacturer’s handbooks, such as SKF [6] for detailed calculations. 
 
 
3.3 Breakaway Torque 

 
The breakaway torque, or the starting torque is the frictional moment required to start the idler 
roll rotating from the stationary position.  The breakaway torque can be considerably higher 
than the running values.  The reasons for the larger values on starting can be attributable to 
lower lubricating grease temperature, which are less than the operational bearing 
temperatures resulting in lubricants operating at higher dynamic viscosities, and also the 
transition from static to dynamic friction of the contact seals.  SKF [6] suggests that the 
starting torque of a rolling bearing is approximately twice as high as the load dependent 
friction moment for deep groove ball bearings, and up to four times higher for tapered roller 
bearings.   
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4 INDENTATION ROLLING RESISTANCE 
 
Excluding the power required to lift the bulk solid the belt indentation component is generally 
considered to be the greatest proportion of the main resistance.  Research by Hager and 
Hintz [7] has indicated that the belt indentation resistance can comprise up to 60% of the 
overall power consumption on long horizontal belt conveyor installations.  This section 
describes a linear viscoelastic finite element analysis developed by Wheeler [13] to model the 
indentation rolling resistance of a belt conveyor.  The numerical analysis described models 
the viscoelastic rolling contact problem as the bottom cover of the conveyor belt is indented 
due to the weight of the belt and bulk material. The analysis predicts a rolling resistance factor 
as a result of the asymmetric pressure distribution generated in the indentation zone. 
 
Indentation rolling resistance occurs due to the viscoelastic nature of the bottom cover of the 
belt, which is typically made from rubber compounds.  Rubber is a viscoelastic material and 
may be considered to exhibit properties intermediate between an elastic solid and a viscous 
liquid.  Characteristics include the rigidity of an elastic solid, but the ability to flow and 
dissipate energy by frictional losses as a viscous fluid.  As the rubber belt travels over the 
idler roll the bottom cover of the belt is indented due to the weight of the belt and bulk 
material.  The contact area consists of an area of increasing pressure as the belt drives into 
the rigid roll, followed by an area of decreasing pressure as the belt travels over the roll.  The 
cyclic indentation of the bottom cover of the belt as it passes over the idler rolls generates a 
resistance to motion due to the formation of an asymmetric pressure distribution within the 
contact area of the idler roll and belt. 
 
The rolling contact between a rigid cylinder and a viscoelastic medium is a situation that 
occurs in many engineering applications, including the interface between an idler roll and the 
bottom cover of a conveyor belt.  As a result various experimental measurement techniques 
and theoretical analyses have been published on the topic, however of significance is 
research by Jonkers [8] and Spaans [4] that provided direct analysis of the topic in relation to 
a conveyor belt. 
 
Jonkers [8] models the indentation resistance by first considering the indentation profile in the 
contact region as an arc that is approximated by a half sine curve.  The pressure distribution 
acting within the contact region due to the weight of the belt and the bulk material is then 
calculated, with the assumption that the highest pressure occurs at the centreline of the idler.  
The hysteresis work in the indentation zone is then modelled using the measured hysteresis 
loop for the particular conveyor belt material with an indentation frequency determined by the 
belt speed and idler spacing.  
 
Spaans [4] provides a linear analysis accompanied by hysteresis in order to model the 
indentation rolling resistance.  The distribution of surface pressure within the contact region is 
a function of the radius of the idler roll and the curvature of the belt.  The compressive 
stresses within the indentation region are considered directly proportional to the depth of 
indentation by assuming the deformation of the belt only occurs perpendicular to the surface 
of the roll.  To model the hysteresis losses within the indentation process a sample of belt was 
compressed between two parallel plates and mechanically loaded through a sine wave 
generator.  The indentation depth, frequency and time of indentation during the hysteresis 
loss measurements are equivalent to those of the modelled conveyor installation.  
 
Theoretical predictions of the indentation rolling resistance by Jonkers [8] and Spaans [4] are 
reported to provide close approximation with experimentally measured values.  However, as 
discussed by Lodewijks [9] the limitations of both methods are within the predicted distribution 
of the surface pressure within the contact region, and the assumption that the peaked stress 
occurs at the idler centreline.  While this may be the case for low and high belt speeds the 
pressure profile tends to become more offset during typical belt conveyor operating speeds.   
 
Lynch [10] and Batra et al. [11] apply finite element methods to determine the solution of 
viscoelastic rolling contact problems, with the later incorporating thermomechanical 
properties.  Lynch [10] provides a numerical solution to the rolling of a viscoelastic sheet 
between two rigid rolls.  Batra et al. [11] provides a thermoviscoelastic numerical solution to 
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the rolling contact of a rigid cylinder with a viscoelastic layer bonded to a rotating cylinder.  In 
each of the solutions provided the depth of indentation is prescribed by virtue of the process 
being modelled, ie: two rolls a set distance apart with a viscoelastic layer in rolling contact.   
 
 
4.1 Finite Element Analysis 

 
In view of the successful application of finite element methods to the viscoelastic rolling 
contact problem by Lynch [10] and Batra et al. [11] a similar approach has been adopted by 
the author to model the stress profile at the roll and belt contact region to predict the resultant 
belt indentation rolling resistance.  A particular advantage of the finite element method is the 
ability to model the viscoelastic memory effect of the belt since the stress in a given control 
volume is influenced by the strain in each control volume through which the material 
previously passed.  This removes the limitations imposed by the closed form solutions 
described previously, and allows the asymmetric pressure distribution within the contact 
region to be effectively predicted.  The modelling technique described incorporates the 
asymmetric loading profile with the added advantage of not having to specify an indentation 
depth or contact length since the roll diameter will prescribe the lower boundary conditions, 
while the upper surface of the belt will be subjected to an external uniform load due to the 
weight of the belt and bulk material.  The finite element representation of the indentation zone 
is shown schematically in Fig.8.  The continuum is divided into a finite number of triangular 
elements each connected at nodes, and depending if the node is a boundary or internal node, 
either the displacement or load is specified in each co-ordinate direction.  
 

 
Fig.8:  Finite element representation of the interface between the belt and idler roll. 

 
 
The numerical method of viscoelastic stress analysis described is derived from the analysis of 
Lynch [10] and Batra et al. [11] with the primary distinction being a non-prescribed indentation 
depth.  The analysis that follows assumes that the lower cover of the belt is homogeneous 
and isotropic.  The speed of the belt is considered to be constant so a steady state 
viscoelastic stress analysis may be applied, where the deformation of the rubber in the 
indentation zone is sufficiently small to apply linear constitutive laws.  The isotropic forms of 
the viscoelastic stress strain relations in terms of the shear G1, and bulk relaxation moduli G2 

are given by Christensen [12] as: 
 

d
d

de
tGs

ijt

ij 1         (20) 

 

Indentation Length 

 

Uniform Pressure Distribution 

 

Idler Roll Radius 

 Belt Flexure Radius 

 

Analysis Zone 

 

Belt Carcass 

 
Bottom Cover 

 



 

Copyright is vested with IMHC    
14 

and, 
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Where the deviatoric components of stress sij and strain eij are given by 
 

kkijijijs
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where, δij is the Kronecker symbol. 
 
Lynch [10] derives an overall stiffness of the structure by integrating Eqs. (20) and (21) by 
finite differences in equal time increments.  Both Lynch [10] and Batra et al. [11] consider the 
viscoelastic structure to be “flowing”, utilising a coordinate system fixed to the loads acting on 

the structure.  Lynch [10] provides the stress,{ }R at the Rth element as the sum of the 

stresses imposed by the preceding elements through which the element has passed, which is 
given by 
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and, similarly bRK is obtained by replacing ⅔G1 by ⅓G2. 
 
By applying the theorem of virtual work to the strains in the elements as a result of the nodal 
displacements, Lynch [10] derives the loads {P}R acting on an element R of volume VR as 
 

R
T
RRR AVP          (27) 

 

Where 
T
RA  is the transpose of the matrix RA , which is given by 

 

R

R
R

r
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Where Rr  represents the nodal displacements.  Therefore by combining equations (24), (27) 

and (28) Lynch derives the stiffness relation as 
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or, 
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RK
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1

         (30) 

 
Equilibrium is then obtained by assembling the entire grid of elements at the nodal points and 
ensuring the external loads acting on the nodes are equal to the forces generated at the nodal 
points due to the displacements. 
 
 
4.2 Program 

 
In order to undertake the numerical analysis described previously a FORTRAN 90 program 
was developed.  The finite element linear viscoelastic analysis was undertaken in a similar 
manner to Lynch [10] and Batra et al. [11], however due to the nature of the indentation rolling 
mechanism formulation of the boundary conditions were significantly different.  In order to 
simulate the belt travelling over the idler roll a numerical procedure was developed to allocate 
a uniform load distribution to the top surface of the bottom cover.  Also, unlike the analyses 
undertaken by Lynch [10] and Batra et al. [11] the load, and not the depth of indentation is 
prescribed, and therefore an iterative procedure was developed to increase the depth of 
indentation until the specified total vertical load is reached. 
 
The belt speed, idler roll diameter, length of analysis zone, thickness of bottom cover, load 
distribution, total width of belt, number of elements in a row and the number of rows are each 
required inputs.  The shear and bulk relaxation moduli are input from a separate data file to 
enable actual measured data to be used.  The program then calculates the nodal coordinates 
for each element in the grid and defines the nodal loads acting on the top surface of the 
structure as a uniformly distributed load acting at the interface between the bottom cover and 
the fabric or steel cord carcass.  The nodes along the bottom edge are free nodes, except at 
the belt and idler interface where the nodes are forced to conform to the profile of the roll 
through a stepwise iterative procedure.  
 
The program then calculates the stiffness matrix for each element of the grid and assembles 
the stiffness matrix.  Depending on the node, either the displacement or the load is prescribed 
in each coordinate direction.  The equilibrium equations are solved by iterative means for the 
displacements at each node.  The sum of the vertical forces acting on the nodal points within 
the contact zone is then compared to the required load distribution.  An iterative procedure is 
undertaken to vary the depth of indentation until the sum of the forces acting on the roll 
surface in the indentation zone is equal to the force distribution applied at the bottom cover 
and carcass interface to within a nominated tolerance.  The horizontal forces acting at the belt 
and idler roll interface are calculated by taking moments about the centreline of the roll of the 
vertical forces.  The indentation rolling resistance factor is then calculated from the ratio of the 
sum of the horizontal to vertical forces.  
 
The load applied at the interface between the bottom cover and the carcass is derived from 
the load distribution acting on each idler roll.  The load distribution is calculated from the belt 
deflection analysis and given by the sum of the normal forces acting along the length of the 
conveyor belt span for each transverse node, n.  For the centre idler roll the normal force 
distribution is therefore given by   
 

maxm

m
n,mcnncn FF

1

                   where; 1 < n  njunct    (31) 

 
While for the side idler rolls the normal force distribution is given by   
 

maxm

m
n,msnnsn FF

1

                  where; njunct < n  nmax    (32) 
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4.3 Results 

 
The following results are presented for the purpose of demonstrating the numerical analysis 
technique described.  The results presented are for a natural rubber cover, 5mm thick with a 
shear relaxation modulus G(t) derived from the storage moduli, G' and the loss moduli G'' 
obtained from dynamic viscoelastic tests.  Fig.9 shows the calculated indentation rolling 
resistance factor for a Ø150mm idler roll under simulated loads up to 2.5kN/m for a belt speed 
of 6m/s.  The calculated relationship allows the total horizontal force due to the indentation 
rolling resistance to be calculated by integrating over the idler roll set given the normal force 
distribution from Eqs. (31) and (32).   
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Fig.9: Calculated indentation rolling resistance factor versus normal force 
 
Analysis has shown the importance of modelling the whole area affected by the indentation, 
including the lagging tail within the recovery zone, which can be over 100mm at high belt 
speeds.  An underestimation of the length of the affected zone tends to overestimate the 
calculated rolling resistance since the full uplifting effect of the lagging tail is not accounted 
for.  The results show good correlation to tests undertaken on a recirculating conveyor belt 
test rig at The University of Newcastle, where the roll diameter, vertical load, belt speed, 
bottom cover thickness and type of belt can be changed. 
 
 
5 CONCLUSION 
 
This paper has discussed each component of the main resistance and provided methods to 
calculate the contribution of each component.  In practice the iterative process to calculate the 
deflection of the conveyor belt is undertaken first.  The flexure resistance of the conveyor belt 
and bulk solid per idler set is then calculated, as is the normal force distribution acting along 
the length of each idler roll.  Given the normal force distribution the viscoelastic finite element 
model is then applied to calculate the indentation rolling resistance force per idler set.  The 
resistance component due to the rotational resistance of the idler rolls is then added to give 
the total resistance per idler set.   
 
Due to the change in belt tension along the length of a conveyor the flexure resistance of the 
belt and bulk solid will vary and should be calculated over a range of belt tensions derived 
from a dynamic analysis.  Belt tension has little influence on the indentation rolling resistance 
or the rotational resistance of the idler rolls.   
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