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INTRODUCTION 

The profile of a belt conveyor often changes direction. In the case of a troughed 
conveyor cross section, the inner portion of the belt will travel a different distance 
compared to the outer edges. It is necessary that the change of direction does not 
induce undesirable effects in the belt. 

This paper develops the theory of stresses induced in a troughed belt where the 
angle of inclination changes. It provides methods of calculating the theoretical line 
that the belt should follow and discusses the challenges facing the building of a 
conveyor in order for the belt to follow the theoretical line. Practical details of the 
conveyor layout are not included. 

The equations for calculating vertical curve radii listed in four commonly used 
reference works are compared to the equations derived in this paper. The reference 
works are Conveyor Equipment Manufacturer’s Association (CEMA) edition 5, CEMA 
edition 6, Mechanical Handling Engineers Association (MHEA) and Conveyor 
Manufacturer’s Association (CMA) diploma course notes. 

The paper addresses common issues that result in the incorrect sizing and layout of 
conveyors having changes in vertical direction. 

SYMBOLS USED IN THIS PAPER 

    =    idler wing roll angle (degrees) 
   =    change of angle factor 
   =    change in angle at a vertical curve (degrees) 
   =    belt mass (kg/m) 
     =    belt modulus (kN/m) 
    =    combined curve bedding and belt mass loss factors 
   =    gravitational constant (m/s2) 
    =    Spacing of the idlers in a convex curve (m) 
     =    minimum radius at concave curve to prevent belt lifting (m) 
       =    minimum radius at concave curve to prevent overstress in the centre 

of the belt (m) 
     =   minimum radius at concave curve to prevent belt edges from buckling 

 (m) 
     =  minimum radius at a convex curve to prevent buckling in the centre of 

the belt (m) 
     =  minimum radius at a convex curve to prevent overstress of the belt 

edges (m) 
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      =  minimum radius at a convex curve to limit change of angle at an idler 
to 30 minutes (m) 

      =  concave curve radius (m) 
    =  convex curve radius (m)  
   =  length of arc (m) 
      =  maximum recommended belt tension (kN/m) 
    =  lowest tension (N) 
     =  tension at the lowest tangent point of a concave curve (kN) 
    =  average tension in a curve (kN) 
       =  tension at a convex curve (kN) 
      =  minimum allowable belt tension at convex curve to prevent  

  buckling (kN) 
      =  full width rated tension of the belt (kN) 
    =  belt width (m) 

VERTICAL CURVES 

There are two types of vertical curve. A convex vertical curve joins two sections of 
conveyor that have decreasing angle of inclination. The second type of vertical curve 
is a concave curve and this joins two sections of conveyor that have increasing angle 
of inclination. 

This paper discusses only three roll troughed belt conveyors because it is the trough 
that imposes any degree of complexity to the design of a curve.  The same principles 
can be extended to five roll troughed idlers. 

At any particular position along the conveyor, the belt tension continuously changes 
with different operating criteria and loading conditions. However, under the same 
operating criteria and loading conditions, the tension at any point along the 
conveyor will always be the same. 

The first step in design of vertical curves is to calculate the tension at the curve for 
sets of conditions that represent the extremes. Since the curve geometry is not 
known, the position used for the calculations is the intersection point of the 
imaginary lines extended from the sections of conveyor joined by the curve. (Figure 
1). 

One of the common errors in designing vertical curves is incorrectly estimating the 
extremes in tension at the intersection point. The upper limit of tension normally 
occurs when the fully loaded conveyor is started, but if the section preceding the 
curve has a negative inclination this may not be the case. The tension at any point 
along the conveyor is the sum of the effective tension at the point plus the adjusted 
slack side tension. Adjusted slack side tension is the tension applied by the take-up 
adjusted by and amount to drive the belt between the take-up and the point under 
consideration, plus any belt slope tension. 

Having established the extremes of tension at the curve, the radius of curvature 
must be chosen to satisfy these criteria. 
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1. Concave curves 

1.1 The belt does not lift out of the conveyor structure 

1.2 The centre of the belt is not overstressed 

1.3  The belt edges do not buckle due to loss of tension. 

2. Convex curves 

2.1 The centre of the belt does not buckle due to loss of tension 

2.2 The belt edges are not overstressed. 

Figure 1.  Arrangement of vertical curves 

In a concave curve the belt sits on the idlers under its own weight and the weight of 
the material it is conveying.  Tension in the belt tends to pull it out of the idlers. 
When the belt lifts out of the idlers the trough shape flattens, the belt can foul with 
other structure or chutes and belt tracking provided by the troughed idlers is lost.  
All of these are undesirable as they can be detrimental to efficient operation. When 
the belt is unsupported it will naturally follow part of a catenary curve. 

Consider the arbitrary catenary curve shown in Figure 2. Suppose the section from A 
to P represents a portion of belt that is hanging under its own weight and the 
tensions T0 and T at each end of the portion of belt. Since the belt is in a state of 
equilibrium, the forces must all balance. If the unit mass of the belt is   and the 
length of the belt between A and P is  , the vertical forces are     and      . 
Horizontal forces are    and      . 
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So   
               
 
And 
 

          

Or  

   

  
 
     

     
 

From which 

   
   

    
 1 

When the radius is large and the change in angle small, the portion of the catenary 
curve is closely represented by the arc of a circle. The arc length for the circle is    
and hence   can be replaced by   . 

The arc length   is also given by 

        

Where   
  

  
 

So equation 1 can be written in terms of a radius   as follows 

  
      

   
 

Introducing a change in angle factor   
    

  
 and using the specific symbol for 

tension at the beginning of the curve, the equation for determining the minimum 
radius to prevent belt lifting off the conveyor carry idlers in a concave curve is 

    
        

 
 2 

Figure 1.  Catenary curve
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Since the change in angle is only known if the radius is known, it would be 
convenient to use a constant angle factor. The largest change in angle that would be 
encountered at a vertical curve is 30 degrees, for which the angle factor 

 
    

  
      . 

Thus, Equation 2 can be re-written as 

    
      
 

 

To calculate the difference in tension at belt edges and centre of the trough, the 
tension gradient in the belt must be understood. The belt, when troughed by three-
roll idlers is formed into a shape that roughly approximates a trapezoid. There exists 
a centroid plane parallel to the bottom of the trough that intersects with the sloped 
belt edges. 

The position of this plane is    from the bottom of the trapezoid shape and    from 
the top. 

   
 

 
 (   )

 

 
(   )      

For   = 1/3, that is three equal roll trough idlers arranged so that the centre of the 
belt and the two raised belt edges are all of equal length equal to W/3. 

   
 

 
     

In terms of the depth of the trough   

  
 

 
     

So 

   
 

 
 

This means that at a position one third of the depth above the centre of the belt, the 
belt tension is equal to the calculated tension. Below the centroid plane, the belt 
must travel a greater distance thereby inducing additional tension. The length of belt 
along the centroid plane (neutral axis) between the two tangent points is    . The 

distance along the bottom of the trough is (   
 

 
) . The difference in length is 

 

 
  

and therefore the strain   
 

   
. 

The additional force imposed is       

That is  

    
  

  
 

or substituting for d 
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The additional force must be limited to the difference between the rated belt 
tension and the tension at the curve (in the neutral plane). So the radius to prevent 
overstressing the centre of the belt in a concave curve is 

    
       

 (   
  
 )

 

In the concave curve the belt edges travel through a shorter distance than the 
centre. Therefore belt edges in the concave curve are at a lower tension than at the 
neutral plane. The reduction in force is the result of compressive strain which in this 

case is   
  

   
 associated with a force of  

       
        

   
 

So the radius to prevent belt edge buckling is  

    
       

   (
   
      )

 

A very similar situation applies in a convex curve. However, here there is no 
possibility of belt lift and the tension gradient goes from lowest in the centre of the 
belt to highest at the belt edges. 

The strain at the belt edges located at two thirds the trough depth above the neutral 
plane is  

  
  

  
 

And hence the additional tension at the belt edge is  

      
        

  
 

And hence 

    
       

 (   
   
 )

 

To prevent buckling in the centre of the belt 

    
       

   (
   
      )

 

As a consequence of the radial forces, the belt is pulled into the idlers at the convex 
curve. Instead of following a curved path, the belt will tend to follow a path 
represented by a series of straight lines joining the tops of the idler rolls, as depicted 
in Figure 3. In the case of three-roll offset idlers in the convex curve, there are two 
bend points for each idler set; the centre roll and the wing roll on each side. Figure 4 
shows the profile that is adopted when offset idlers are used. 
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Figure 3.  Convex curve detail 

The change in angle at any idler should be no more than 30 minutes and only in-line 
idlers should be used. To keep the change in angle below 30 minutes requires either  
very close idler spacing or a very large radius. Based on dimensions of the idlers and 
practical considerations, a minimum spacing between idlers in the convex curve is 
determined. This leads to a third, more practical, limit to the radius of a convex curve 

          

The equations for determining the minimum radius of a vertical curve are given in 
every conveyor handbook. As examples, the equations from four commonly used 
reference manuals are listed in Appendix 1. They are stated exactly as they are 
written in the quoted reference. At first glance there appear to be differences in the  
equations for calculating vertical curve radii. These equations, when simplified and 
expressed in the same units of measure, are listed below and compared to the 
derived equations.  

 

Figure 4.  Offset idlers in convex curve
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COMPARISON OF EQUATIONS FOR CONCAVE CURVES 

Minimum radius to prevent belt lifting from the idlers 

Derived 

     
        

 
 

CEMA 5 CEMA 6 MHEA CMA 

    
      
 

     
      
 

     
      
 

     
          

 
 

Minimum radius to prevent over stress of centre of the belt 

Derived 

     
        

 (   
  
 
)
 

CEMA 5 CEMA 6 MHEA CMA 

    
        

 (   
  
 
)

     
        

 (   
  
 
)

     
        

 (   
  
 
)

     
        

 (      
  
 
)

 

For textile reinforced belts 

or 

    
        

   (      
  
 
)

 

For steel cord reinforced 
belts 

Minimum radius to prevent buckling of the belt edges 

Derived 

     
       

   (
   
 
     )

 

CEMA 5 CEMA 6 MHEA CMA 

    
        

   (
  
 
      )

 

For textile reinforced 
belts 

Or 

   

 
        

     (
  
 
      )

 

For steel cord reinforced 
belts 

    
        

   (
  
 
      )

 

For textile reinforced 
belts 

Or 

    
        

   (
  
 
      )

 

For steel cord reinforced 
belts 

   

 
       

   (
  
 
     )

 

 

    
        

      
 

For textile reinforced 
belts 

Or 

    
        

     
 

For steel cord reinforced 
belts 
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COMPARISON OF EQUATIONS FOR CONVEX CURVES 

Minimum radius to prevent buckling of the centre of the belt 

CEMA 5 CEMA 6 MHEA CMA 

   

 
        

 (        )
 

    
        

 (        )
     

           

     (       )
     

        

 (         )
 

Minimum radius to prevent overstress at the belt edges 

CEMA 5 CEMA 6 MHEA CMA 

    
        

   (     )
     

        

   (     )
     

           

      
 

   

 
        

   (         )
 

CONCLUSION 

The CEMA equations in both the 5th and 6th editions are consistent with the derived 
equations. In the case of concave curves the MHEA equations for calculating 
minimum radii are also consistent with the derived equations. However, the MHEA 
equations for convex curves differ from derived. This is particularly so for minimum 
radius to prevent buckling. Using the MHEA equation will result in a radius of 
between six and four times greater than would be calculated by the derived 
equation. In the case of calculating a radius required to prevent overstress, the 
MHEA equation is the same as the derived equation when the tension factor of 2 is 
used, provided the rated belt tension used is the difference between maximum 
permissible belt tension and the tension in the curve. Likewise, when the lowest 
tension factor of 1.3 is used, the calculated minimum radius will be 1.6 times greater 
than when using the derived equation. 
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APPENDIX 1  

EQUATIONS FOR CALCULATION OF VERTICAL CURVE RADII FROM FOUR REFERENCE 
SOURCES 

 

Concave Curves 

1. Minimum radius to prevent belt lifting from the idlers. 
 

1.1 CEMA 5 equation (p. 227) 
and CEMA 6 equation (p. 235) 

 

   
      
  

 

 
Where 
   = belt tension at point c (lbf) 
   = weight of belt (lbf/ft) 

 
The metric equivalent is  

   
      
  

 

 
Where 
   = belt tension at point c (N) 
  = acceleration of gravity (m/s2) 
  = belt mass (kg/m) 

 
1.2 MHEA equation (Page 142) 

  
      
   

 

 
1.3 CMA diploma course notes (pp. 6-2) 

   
     

             

   
 

 
Where 

   = tension at the lower tangent point (kN) 
  = belt mass (kg/m) 

   = acceleration of gravity (m/s2) 
   = curve bedding factor (value of 1.1) 
   = starting factor 
   = mass loss factor (value of 1.1 to allow for 10% loss of belt mass) 

   = slope factor    
 

     
  

  = change in slope at the curve. 
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2. Radius to prevent overstress of centre of the belt 

 

2.1 CEMA5 equation (p. 278) 

   
(        )(  )(  )( )

     
 

 
Where 

  = belt width (in) 

         = 
    

    
 

   = elastic modulus of belt (lbf/in/ply) 
  = number of plies 
  = trough angle (degree) 

2.2 CEMA 6 equation (p. 236) 

   
     

   

     
 
    

  
 (  

  
  

)
 

 

 
Where 

   = belt width (in) 
   = elastic modulus of belt (lbf/in/ply) 
  = number of plies 
  = trough angle (degree) 

   = 
  

 
 

   = rated belt tension (lbf) 
   = tension at the curve (lbf) 

 
2.3 MHEA equation (p. 142) 

   
(    )( )(   )

  (     )
 

 
Where 

  = belt width (m) 
    = Modulus of elasticity of the belt (kN/m) 
   = Tension in the belt at the curve (kN) 
   = Maximum allowable tension for the belt (kN) 
  = troughing angle (degree) 

 
2.4 CMA equation (p. 6-3) 

  
        

   [(      )  (
      

 )]
 

 
Where 

   = belt class (kN/m) 
   = belt factor  = 9000 for textile reinforced belts 
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 = 4500 for steel cord reinforced belts 
W = belt width (mm) 
  = idler wing roll angle (degrees) 
  = Belt modulus (kN/m) 
   = Tension at the curve (kN) 
 

3. Radius to prevent buckling of the belt  edges 
 
3.1 CEMA 5 equation (p. 244) 

   
(        )(  )(  )( )

  (      )
 

 
Where 

  = belt width (in) 

         = 
    

      
 

   = elastic modulus of belt (lbf/in/ply) 
  = number of plies 
  = trough angle (degree) 
   = tension at the curve (lbf) 
   = belt factor = 1 for textile reinforced belting 
 = 2.5 for steel cord reinforced belting 

 
  3.2 CEMA 6 equation (p. 236) 

   
     

   

        
 
    

  
 (  (

  
  

)
 

) 

 
Where 

   = belt width (in) 
   = elastic modulus of belt (lbf/in/ply) 
  = number of plies 
  = trough angle (degree) 

   = 
  

 
 

   = tension at the curve (lbf) 

   = maximum allowable edge stress (lbf/in) = 75 - 1.5 x 
  

  
 for steel 

cord reinforced belts 
 = 30 for textile reinforced 

belts 
 

3.3 MHEA equation (p. 142) 

    
(    )( )(   )

    (       )
 

 
Where 

  = belt width (m) 
    = Modulus of elasticity of the belt (kN/m) 
   = Tension in the belt at the curve (kN) 
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   = Maximum allowable tension for the belt (kN) 
  = troughing angle (degree) 
 

3.4 CMA equation (p. 6-3) 

  
  (        )

         
 

 
Where 

   = belt class (kN/m) 
   = belt factor  = 4.5 for textile reinforced belts 
 = 12 for steel cord reinforced belts 
W = belt width (mm) 
  = idler wing roll angle (degrees) 
  = Belt modulus (kN/m) 
   = Tension at the curve (kN) 
 

Convex Curves 

 
4. Radius to prevent buckling of centre of the belt 
 
4.1 CEMA 5 equation (p. 278) 

   
(        )  (  )( )

      
 

 
Where 

  = belt width (in) 

         = 
    

    
 

   = elastic modulus of belt (lbs/in/ply) 
  = number of plies 
  = trough angle (degree) 
   = tension at the curve (lbs) 
 

4.2 CEMA 6 equation 9.14 (p. 240) 

   
(  )(  

 )( )

        
 
   ( )

  
 (  

  
  

)
 

 

 
Where 

   = belt width (in) 
   = elastic modulus of belt (lbf/in/ply) 
  = number of plies 
  = trough angle (degree) 

   = 
  

 
 

   = tension at the curve (lbf) 
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4.3 MHEA formula 5 (p. 146) 

   
(    )( )(   )( )

      (       )
 

 
Where 

  = belt width (m) 
    = Modulus of elasticity of the belt (kN/m) 
   = Tension in the belt at the curve (kN) 
  = troughing angle (degree) 
  = Factor between 1.3 and 2 depending on percentage of maximum 

allowable tension that exists at the curve. 
 

4.4 CMA equation 14 (p. 6-9) 

  
        

    [
(       )

  (
       
  

)]
 

 
Where 

   = belt class (kN/m) 
   = belt safety factor  = 10 for textile reinforced belts 
 = 6.67 for steel cord reinforced belts 
W = belt width (mm) 
  = idler wing roll angle (degrees) 
  = Belt modulus (kN/m) 
   = Tension at the curve (kN) 
 

5. Radius to prevent overstress of the belt edges 
 
5.1 CEMA 5 equation 5 (p. 254) 

   
(        )  (  )( )

     
 

 
Where 

  = belt width (in) 

         = 
    

      
 

   = elastic modulus of belt (lbs/in/ply) 
  = number of plies 
  = trough angle (degree) 
   = belt tension at the curve (lbs) 
   = rated belt tension (lbs) 
 

5.2 CEMA 6 equation 9.15 (p. 240) 

   
(  )(  

 )( )

     
 
   (  )

  
 (  (

  
  

)
 

) 
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Where 
   = belt width (in) 
   = elastic modulus of belt (lbf/in/ply) 
  = number of plies 
  = trough angle (degree) 

   = 
  

 
 

   = rated belt tension (lbf) 
   = tension at the curve (lbf) 

 
5.3 MHEA equation (p. 146) 

   
(    )( )(   )( )

       
 

 
Where 

  = belt width (m) 
    = Modulus of elasticity of the belt (kN/m) 
   = Maximum allowable tension for the belt (kN) 
  = troughing angle (degree) 
  = Factor between 1.3 and 2 depending on per cent of maximum allowable 
tension that exists at the curve. 

 
5.4 CMA equation 13 (p. 6-9) 

  
        

    [(
       
  

)  (
      
 )]

 

 
Where 

   = belt class (kN/m) 
W = belt width (mm) 
  = idler wing roll angle (degrees) 
   = Belt modulus (kN/m) 
   = Tension at the curve (kN) 
   = belt safety factor = 10 for textile reinforced belts 

= 6.67 for steel cord reinforced belts 
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