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TOOLS AND ADVANCEMENTS IN 3D PULLEY FINITE ELEMENT ANALYSIS 
FOR BELT CONVEYORS 

R Lemmon, D Kruse 

Advanced Conveyor Technologies Inc. (AC-Tek) 

 

This paper will describe a new 3D finite element analysis tool for analysing conveyor 
pulleys.  Previously, detailed pulley analysis could only be done using complex and 
expensive finite element analysis software.  Even then the effort, expertise, and time 
required to correctly model and interpret the results for a pulley was extensive.  This 
new tool allows manufacturers and everyday conveyor designers the ability to quickly 
and easily verify, compare, and optimise pulley designs. 

1. INTRODUCTION 

Pulleys are a critical part of a conveyor system, yet they continue to fail on an 
unacceptable basis.  Surprisingly, many of these failures happen on new installations 
and within the first year of operation.  After reviewing some recent failures, it was 
found that either the pulley analyses were incorrectly preformed, or no pulley analysis 
had even been performed.  With the advancements in computer analysis and 
technology, this is simply unacceptable in this day and age. 

There have been many papers written on pulley analysis and different solution 
methodologies.  These methods range from simplified closed form solutions1,2, quasi 
finite element methods3,4, 2D axis-symmetric finite element methods5,6,7,8, and full 3D 
finite element methods9. 

However, all of these methods require a high level of technical ability in advanced 
mathematics, coding, and finite element analysis.  The time and effort required to set 
up a model or program to analyse pulleys is significant.  Unfortunately, there has not 
been a software package specifically designed for pulley analysis that is: 

1. Easy to use 
2. Fast and efficient 
3. Easy to understand and interpret the result 
4. Allowed design optimisation and comparisons 
5. Has easy to understand reports for end users and clients 

AC-Tek is the publisher of the Sidewinder software.  Sidewinder’s sole purpose is the 
analyses of conveyors.  When a conveyor is analysed, all pulley design loads are 
calculated.  Pulley shafts can be designed using either CEMA B105 or AS-1403 
standards.  These methods provide design criteria for pulley shaft stresses and 
deflections.  For the analysis of the pulley locking device, end disk, and rim there are 
only very rudimentary methods available without preforming a full finite element 
analysis.  Worse, these methods can be very inaccurate, and their validity depends 
strongly on the pulley geometry and various assumptions (which may or may not be 
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correct).  Because of this, the most reliable method for pulley analysis is the use of the 
finite element method. 

As such, a two-dimensional axis-symmetric finite element model that accurately 
models the three dimensional stresses and deflections of pulleys and shafts has been 
developed.  This model is directly incorporated into the Sidewinder software.  It has 
been named PAX.  The engineer can seamlessly model the conveyor, and pulleys, with 
the same software package. 

This paper compares the analysis of pulleys by the following methods: 

1. Full 3D finite element analysis using the ANSYS FEA software. 
 

2. Analysis of the 3D stresses and deflections by 2D axis-symmetric elements 
using the ANSYS software 
 

3. Analysis of the 3D stresses and deflections by 2D axis-symmetric elements 
using the Sidewinder Software (PAX) 

 
As will be shown, all three methods give almost identical results.  However, as the PAX 
has specifically been optimised for pulleys, it is by far the most efficient, fastest, and 
easiest to use.  Furthermore, post processing methods to analyse specific items such 
as weld stresses and the bending moment across the locking device are already built 
in. 
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2. METHODOLOGY OF FULL 3D MODEL 

The basic methodology to analyse a pulley with 3D elements is relatively straight 
forward.  The following procedure is used: 

Step 1: Build the 3D geometry 

Step 2: Apply the boundary conditions 

Step 3: Apply the pulley loads 

Step 4: Solve the solution in a single step 

Step 5: Analyse the results 

To build the 3D geometry there are generally two methods that can be used. 

The first method is to define the 3D shape by volumes and then directly mesh these 
volumes to get the 3D elements.  This method will usually require contact elements 
between each volume as the generated elements in each part may not match one 
another.  The contact elements transfer the loads from one volume to another.  For 
example, a pulley will typically have the following volumes: 

1. Shaft 
2. Locking device assembly 
3. End disk 
4. Rim 

This method for creating a 3D model is perhaps the easiest and requires the least 
amount of “finite element knowledge”.  Typically, a commercial package will allow the 
user to directly import and mesh a 3D volume.  It can also automatically add the 
necessary contact elements. 

Unfortunately, this methodology can result in large elements, or poor meshing quality.  
This can lead to underestimating the actual stresses at critical locations.  As such this 
method is not recommended.  

The preferred method to building a 3D model is: 

Step 1: Build the 2D geometry 

Step 2: Mesh the 2D geometry 

Step 3: Rotate the 2D geometry to make 3D elements. 

By rotating the 2D elements the 3D elements will be evenly spaced in defined 
rotational increments (2 degrees, 5 degrees, etc). 

The main advantage of this method is that the user has excellent control in defining 
the element size in the 2D mesh.  Visualisation and checking of the 2D mesh is also 
much easier.  The only location where the mesh is not optimal is at the shaft centre.  
Here the brick elements must be reduced to wedges.  However, at the shaft centre, 
the stress gradients are very low, and this is not a critical location in terms of the stress 
analysis.  Figure 1 shows the elements of a pulley in which the 2D elements were 
rotated every 5 degrees. 
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Figure 1. 3D mesh of a pulley 

This paper uses the above method for the full 3D analysis. 

If the pulley is symmetric around the centreline of the belt, only half of the pulley 
needs be analysed (as is done in Figure 1).  This reduces the number of elements and 
nodes in half, so the run time is much faster.  A symmetric boundary condition is then 
placed at the axial centre point.  For non-driven pulleys this is always the case.  It is 
also valid for dual drive pulleys (i.e. that have two motors that are symmetrical).  
However, if the pulley only has one motor, then the full pulley geometry must be 
analysed. 

The next step in the 3D analysis is to apply the boundary conditions.  Figure 2 shows a 
symmetric drive pulley with applied boundary conditions.  The following boundary 
conditions and loads are applied: 

1. If the pulley is symmetric, a half model is used.  Symmetric pulleys include 
non-driven pulleys and drive pulleys that have a motor on both sides.  For 
these pulleys, the symmetrical boundary condition of uz=0 at the axial (i.e. 
z=0) location is set. 
 

2. Apply a surface pressure at the belt to pulley contact 
 

3. Apply a shear force at the belt to pulley contact for a driven pulley 
 

4. Set the radial displacement to zero at the shaft centre at the bearing location 
 

5. Apply a thermal load on the locking device to obtain the correct radial 
pressure at the locking device to hub interface. 
 

6. Constrain the shaft end to prevent rotation of the pulley 
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Figure 2. Boundary conditions of symmetrical drive pulley 

After the boundary conditions have been applied, the model is solved.  The solution 
only requires a single load step.  After solving the results can be analysed.  One of 
difficulties of the full 3D model is analysing the results.  In a pulley analysis, the results 
that need to be analysed are: 

1. The bending moment across the locking device. 
 

2. The fatigue stresses including: 
a. Alternating stress at a point. The alternating stress is: 

 𝜎𝑎𝑙𝑡 =
𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛

2
  

where σmax and σmin are the maximum and minimum stress in 360 
degrees of rotation. 

b. For calculation of the Goodman ratio, the mean stress is also required. 

 𝜎𝑚𝑒𝑎𝑛 =
𝜎𝑚𝑎𝑥+𝜎𝑚𝑖𝑛

2
  

3. Shaft slope at the hub 

 
To calculate the bending moment, the axial stress at each point along the length of 
the shaft must be numerically integrated. 
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 𝑀𝑥 =  ∑ 𝜎𝑎𝑥𝑖𝑎𝑙 ∙ 𝑑𝐴 ∙ 𝑟𝑦 

 𝑀𝑦 =  ∑ 𝜎𝑎𝑥𝑖𝑎𝑙 ∙ 𝑑𝐴 ∙ 𝑟𝑥 

 dA = area of element 

 ry, rx = radius of the element on x or y axis 

The bending moment on both the x and y axis is calculated. In the ANSYS software a 
macro can be written to do this calculation. The resultant moment is: 

 𝑀𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 =  √𝑀𝑥
2 + 𝑀𝑦

2 

Figure 3 shows the resulting bending moment (dashed line) calculation of a non-driven 
pulley.  In this particular pulley, the theoretical bending moment at shaft centre is 37 
kN-m.  This assumes that the shaft takes the full bending moment (this is also the 
assumption in the CEMA B105 standard).  However, in reality a part of the bending 
moment is transferred across the locking device into the end disk and rim.  This is very 
significant and cannot be ignored.  The finite element model shows that the bending 
moment at shaft centre is only 12.5 kN-m.  Therefore, the bending moment across the 
locking device is actually 24.5 kN-m. 

Between the bearing and locking device, the theoretical and resultant moment from 
the finite element model should be the same. 

 

Figure 3. Bending moment calculation from finite element model 
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The next step in post processing is determining fatigue stresses at critical locations.  
One of the difficulties in the full 3D analysis is that the results can only be plotted on 
the full 3D geometry.  However, what is really required is the fatigue stresses on a 2D 
cross section.  From the 3D results, one must plot the stress at each cross-sectional 
location (i.e. axial and radial position) as a function of rotation.  In the full 3D analysis 
there really is no easy way to do this.  This will be further discussed in Section 5 “2D 
Axisymmetric Advantages”. 

 

3. METHODOLOGY OF 2D AXISYMMETRIC MODEL  

In this method the pulley is analysed with 2D axisymmetric elements with non-
axisymmetric loading.  This gives a full 3D stress and deflection analysis of the pulley 
using a detailed finite element mesh.  The 2D axisymmetric elements (also called 
harmonic elements) solve the non-axisymmetric loading by defining the forces in a 
series of harmonic functions.  Each harmonic function is defined by reducing the 
pressure and shear loading into a Fourier series.  The 2D model is then repeatedly 
solved for each of the Fourier load series.  Since the model is linearly elastic, the 
solutions from the harmonic functions may be summed together to obtain the final 
full 3D stress and displacements fields. 

A pulley has an axisymmetric geometry in which the shaft centre is the axis of 
revolution.  This methodology was first used in the aerospace industry in which rocket 
nozzles, solid-propellant grains, and spacecraft heat shields were analysed.5  Many 
researchers have used this methodology for analysing pulleys.6,7,8  

Several advanced commercial finite element packages have 2D axisymmetric 
elements in which non-axisymmetric loads can be applied.  ANSYS has been used to 
model pulleys with 2D axisymmetric elements since the early 90’s. 

The basic procedure to analyse the pulley with axisymmetric elements is: 

Step 1: Build 2D geometry 

Step 2: Mesh 2D geometry 

Step 3: Define load cases to be solved with Fourier series. In each load case, the 
boundary conditions and loads must be applied. 

Step 4: Solve each load case 

Step 5: Combine all load cases to obtain final 3D solution 

Step 3 is the most complex part.  The non-axisymmetric load is defined by the 
following equation: 

F(ϴ)=A0 + A1·cos(ϴ)+B1·sin(ϴ) + A2·cos(2·ϴ)+B2·sin(2·ϴ) + A3·cos(3·ϴ)+B3·sin(3·ϴ) + …. 
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Each of the above terms is applied in a separate load step.  Each load step is then 
solved independently.  After each load step is solved, they are summed together to 
obtain the final 3D solution. 

In a pulley the following loads are applied: 

1. Radial pressure resulting from the belt contacting the pulley 
2. Shear stress at the belt contact zone on a non-driven pulley 
3. Locking device load 
4. Overhung loads at shaft end on a driven pulley (if present) 
5. Gravity 

As an example, a drive pulley with 198 degrees of wrap and an overhung load can be 
analysed. 

For this example, it is assumed that the radial pressure applied by the belt tension is 
linear and proportional to belt tension around the wrap angle.  The belt tension load 
is distributed by applying a normal pressure on the rim.  This normal pressure is 
applied on the elements in the belt wrap contact zone. The required normal pressure 
is: 

  

At the high tension location, the pressure P1 = T1 / bw / R.  At the low tension location 
the pressure P2 = T2 / bw / R. 

Figure 4 shows a theoretical pressure distribution in red.  The graph has been 
normalised such that P1= 1 and P2 = T2/T1, where T1 and T2 are the high and low 
tension at the drive pulley.  The green line is the Fourier series fit with 24 coefficients.  
Since each coefficient has a cosine and sine term, there are a total of 48 load cases 
that must be solved for the radial pressure.  The Fourier series curve fit is reasonably 
good with the 24 coefficients.  

 

Figure 4. Fourier series fit of radial square wave with 24 coefficients 
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Of course, the analysis can be made faster with using fewer coefficients.  Figure 5 
shows the Fourier fit with 12 coefficients.  The solution will run twice as fast, but the 
accuracy is reduced.  However, even with only 12 coefficient the Fourier series fit is 
reasonably good.  On the other hand, the analysis can be made more accurate by using 
more coefficients.  Figure 5 also shows the curve fit with 48 coefficients.  The solution 
will take twice as long to run.  However, as the fit with 24 coefficients is reasonable, 
the accuracy improvement with 48 coefficients does not typically justify the extra 
solution time. 

  

12 coefficients 48 coefficients 

Figure 5. Fourier series fit of radial square wave with 12 and 48 coefficients 

The shear stress is generally assumed to be constant in the belt contact zone.  The 
shear stress is: 

  

Where: 

τ = shear pressure 

bw = belt width 

R = outer radius of rim 

ϴ = wrap angle 

Figure 6 shows the Fourier series curve fit assuming 24 coefficients for the applied 
shear stress. 
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Figure 6. Shear Pressure Fourier Series (24 coefficients) 

The locking device applies an axisymmetric pressure on the hub and shaft.  This 
pressure is achieved in the finite element model by applying a thermal load in the 
locking device.  The radial thermal expansion results in the appropriate contact 
pressure at the hub and shaft.  Since the pressure is axisymmetric, only one load case 
is required for the locking device load. 

The overhung load at shaft end requires two load cases.  Likewise, the effect of gravity 
also requires two load cases. 

For the example drive pulley, the total number of load cases is: 

1. Radial pressure: 2 x 24 = 48 
2. Shear stress: 2 x 24 = 48 
3. Locking device load: 1  
4. Gravity: 2 
5. Overhung load: 2 

A total of 101 load cases are required to solve the non-axisymmetric loading on the 
pulley. 

In years past before the workstation computer had multiple cores, the 101 solutions 
were solved sequentially.  At that time, the main advantage of 2D axisymmetric 
solutions was that the memory requirements to solve one of the load cases was 
significantly less than that required for the full 3D solution to obtain the same degree 
of accuracy.  This made it feasible to solve the 2D mesh with considerably smaller 
elements at critical stress locations.  Due to memory limitations, a 3D solution was 
often not possible or at least not practical. 

Today computers can very reasonably be purchased with 8 to 16 cpu cores and with 
memory capacity of 32 to 128 gigabytes.  With an axisymmetric model the load cases 
are completely independent of one another and thus are easily hyperthreaded.  For 
example, a computer with 8 cores can solve 8 load cases at the same time.  With a 
typical 8 core Intel i7 processor a non-driven pulley can be solved in less than a minute.  
A driven pulley can be solved in only a few minutes. 
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Finally, after all solutions are solved the load cases are combined to obtain the final 
3D solution. 

4. MODEL COMPARISON 

This paper will compare the results of three finite element models to analyse a pulley.  
These methods are: 

1. Sidewinder PAX – 2D Axisymmetric model optimised for pulley analysis.  The 
PAX model uses a 3-node triangular element (as a side note, Pax was the 
Roman goddess of peace.  Pax is also Latin for peace.  The PAX name was 
chosen for this software as it gives the user “peace of mind in pulley design”). 
 

2. ANSYS 2D Axisymmetric. For the ANSYS 2D model the PLANE83 element is 
used.  This is the “Axisymmetric-Harmonic 8-Node Structural Solid”. 
 

3. ANSYS 3D model. For the ANSYS 3D model the SOLID186 element is used. 
This is the “3-D 20-Node Structural Solid”.  

The ANSYS models use higher order elements in order for them to be as accurate as 
possible.  The higher order elements have mid-side nodes that allow quadratic 
deformation.  This is then compared to the simpler 3-node triangular element used in 
PAX.  The 3-node triangular element was selected in PAX due to its computational 
efficiency and speed which allows a finer mesh to be used. 

The pulley example to be analysed is a non-driven symmetrical pulley.  As such a half-
pulley model is used for the analysis.  The basic geometry of the example pulley is: 

Pulley geometry and design tension 

Belt width 1600 mm 

Diameter 800 mm 

Shaft diameter, centre 240 mm 

Shaft diameter, bearing 200 mm 

Bearing centre distance 2200 mm 

Rim thickness 20 

End Disk Double profile 

Hub centre distance 1680 mm 

Locking device Ringfeder 7015.1 

Hub diameter 450 mm 

Hub thickness 120 mm 

Wrap Angle 88 degrees 

Belt tension 194 kN 

 
Figure 7 shows the PAX FEA elements.  This model has 5768 elements and 3218 nodes.  
As can been seen, the elements have been refined in critical stress locations (i.e. fillet 
radii). 
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Figure 7. PAX Element Plot of Pulley 

Figure 8 shows the ANSYS 2D element plot.  This model has 2588 elements and 8360 
nodes. 

 

Figure 8. ANSYS 2D Element Plot of Pulley  

Figure 9 shows the ANSYS 3D element plot that has been rotated at 5 degree 
increments. 
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Figure 9. ANSYS 3D Element Plot of Pulley  

In the 3D element model, one must decide how many angular divisions are required.  
This is an important question because it greatly effects the final model size and 
therefore memory requirements and processing time.  Further if there are too many 
elements/nodes, a solution may not be possible depending on how much memory the 
computer has available. 

The 3D model was run at 15, 10, 5, 3, and 1 degree element angular divisions. 

For the 2D models, 28 Fourier coefficients were used. 

The following table shows the number of elements and nodes that are required 
depending on the number of angular divisions.  The table also shows the solve time 
for each model.  Typically using 5 degree angular divisions results in reasonable 
accuracy.  However, if the wrap angle is small (i.e. < 40 degrees) then 2 or 3 degree 
divisions may be required. 

Angular element size 
(degrees) 

Number of 
elements 

Number of 
nodes 

Solve Time 
(seconds) 

2D-PAX 6,607 3,673 43 

2D-ANSYS 2,588 8,360 394 

3D-ANSYS – 15 deg 62,112 277,864 667 

3D-ANSYS – 10 deg 93,168 416,908 284 

3D-ANSYS – 5 deg 186,336 834,040 359 (6 min) 

3D-ANSYS – 3 deg 310,560 1,390,216 693 (11 min) 

3D-ANSYS – 1 deg 931,680 4,171,096 4,224 (70 min) 

All models were run on the same computer, which has an Intel i7-7820X CPU @ 3.6 
GHz 8 core processor and 32 GB of memory.  The 64-bit Windows 10 operating system 
allows full utilisation of the memory.  Both PAX and ANSYS are true 64 bit applications. 
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The primary result of the analysis is that PAX is substantially faster than all the ANSYS 
models.  One reason for this is the very efficient hyper-threading implementation of 
the PAX solver.  Additionally, the post-processing features in PAX has been thoroughly 
optimised specifically for pulley analysis.  ANSYS, on the other hand, is multi-purpose 
finite element package that can be used in many different circumstances and 
problems.  As such it has not been optimised for a specific purpose. 

PAX has been designed solely for the analysis of pulleys and as such was optimised to 
be efficient for this one purpose. 

Curiously, the 3D model that was rotated at 15 degree was much slower than the 10 
degree rotation.  This was due to convergence difficulties with the resulting large 
elements which have a significant amount of curvature.  There was also a large jump 
in the solve time going from 3 degree rotation to 1 degree.  This was a result of the 
much larger model and insufficient memory of the computer (memory swapping to 
the hard drive was required).  The 5 and 3 degree rotations solved in a reasonable time 
frame, but still much slower (8-16 times) than the optimised PAX solution time. 

The critical stress locations for this pulley are the fillet radii in the end disk and shaft.  
Also, of importance is the weld between the rim and end disk. 

Figure 7 shows the rim weld location.  The main stress components at this location are 
the hoop and axial (bending) stresses.  Figure 10 shows the hoop, axial, and von mises 
stress at the weld location.  This figure shows the stress from the ANSYS 3D model, 
ANSYS 2D model, and PAX.  As can be seen, the stress levels for all three models are 
nearly identical.  The maximum stress is 38 MPa.  Figure 11 shows the von mises stress 
on the 3D rim geometry for both ANSYS and PAX. 
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Figure 10. Stress at inside edge at the weld location between rim and end disk 

ANSYS 3D PAX 

 

 

Figure 11. Stress at inside edge at the weld location between rim and end disk  

One of the advantages of axisymmetric 2D element is the ability to easily plot fatigue 
stresses on a contour plot.  Figure 12 shows the von mises alternating stress at the 
weld location.  Welding standards list the allowable fatigue stress, which is reported 
as the stress range (maximum stress minus the minimum stress).  However, the fatigue 
stresses are typically listed as the “alternating stress”.  This is simply half the stress 
range: 
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Again, the results show that the ANSYS 3D, ANSYS 2D and PAX results are the same.  
The maximum alternating von mises stress at the weld location is 33 MPa. 

ANSYS 2D PAX 

 

 

Figure 12. Alternating stress at inside edge at the weld location between rim and end disk 

The maximum fatigue stress in the end disk often occurs at the top inside fillet radius.  
Figure 13 shows alternating stress contour plot at the top inside fillet in the end disk.  
The maximum alternating von mises stress is 46 MPa for ANSYS 2D and is 47 MPa for 
PAX.  Figure 14 shows the stress on a 360 degree rotation at the location of the 
maximum stress in this fillet.  As can be seen the stresses are nearly the same for both 
the full 3D model and the two 2D models. 

ANSYS 2D PAX 

 

 

Figure 13 Alternating stress at inside edge at the weld location between rim and end disk 
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Figure 14. Stress at top inside fillet in the end disk 

Figure 15 shows the von mises stress on the 3D geometry for ANSYS 3D and PAX.  The 
contour lines have been set to 10 to 80 MPa in order to highlight the stress in the top 
fillet. 

ANSYS 3D PAX 

 

 

Figure 15. Von mises stress in end disk 

The maximum stress in the shaft normally occur at the fillets.  This pulley has one fillet 
between the end disk and bearing.  Figure 16 shows von mises alternating stress 
contour plot at the shaft fillet.  The maximum alternating stress is 37 MPa for ANSYS 
2D and is 38 MPa for PAX.  Figure 17 shows the stress on a 360 degree rotation at the 
location of the maximum stress in this fillet.  As can be seen the stresses are nearly 
identical for both the full 3D model and the two 2D models. 
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ANSYS 2D PAX 

 

 

Figure 16. Alternating stress at bearing fillet in shaft 

 

 

Figure 17. Stress at shaft fillet between bearing and hub 

Figure 18 shows the bending stress in the shaft on the 3D geometry for ANSYS 3D and 
PAX.  The maximum bending stress in PAX is 63 MPa and is 61 MPa in ANSYS. 
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ANSYS 2D PAX 

 

 

Figure 18. Axial (bending) stress in shaft 

Of critical importance to pulley design is the actual bending moment transferred from 
the shaft to the end disk and rim through the locking device.  Locking device 
manufacturers list the allowable bending moment in their literature.  One of the most 
difficult calculations in pulley analysis is determining how much bending moment is 
transferred from the shaft to the rim through the locking device.  There is simply no 
accurate closed form solution to calculate this value.  As previously discussed, the only 
accurate way is to complete a finite element analysis of the pulley. 

Figure 19 shows the bending moment in the shaft.  The blue line is theoretical bending 
moment.  This line assumes that the entire bending moment is in the shaft.  In other 
words, the theoretical calculation assumes the shaft does not have an end disk or rim.  
In this pulley, the theoretical bending moment at shaft centre is 36.7 kN-m.  The finite 
element model shows that the actual bending moment between the hubs is 11.7 kN-
m.  Therefore, the bending moment transferred by the locking device is 25 kN-m.  Both 
the full 3D analysis and 2D axis-symmetric analysis give the same results for this 
bending moment. 
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Figure 19. Bending moment in shaft 

In this example, the results between ANSYS 3D, ANSYS 2D axis-symmetric, and PAX 2D 
axis-symmetric are nearly the same.  However, due to the specific optimisation and 
hyperthreading of the multiple load cases, PAX completes the solution significantly 
faster. 

This comparison has been made on many pulleys with different geometries and 
loadings.  The results have been found to be nearly the same in all cases.  Figure 20 
shows various pulleys that were analysed by both ANSYS and PAX. 
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Figure 20. Various pulley geometries analysed using full 3D and 2D axis-symmetric elements 

PAX is a completely parametric model that allows just about any pulley geometry to 
modelled in a few minutes.  This is an enormous advantage over a commercial finite 
element package where the geometry must be defined by defining individual key 
points.  Lines are then defined by connecting key points.  Areas are made by 
connecting the lines.  The areas are then meshed to obtain the final geometry.  This 
allows for any geometry to be defined.  However, it is a very involved process that 
requires careful checking.  If the geometry must be changed, then the individual key 
points, lines, and areas must be manually adjusted and remeshed.  Also, the user must 
manually define the mesh size at each location. 

With the fully parametric model in PAX, the geometry is easily changed by simply 
adjusting the input dimensions.  All meshing is then automatically updated.  
Completing a finite element model of a pulley in PAX can be done very quickly.  



Beltcon 20 – Paper 07 Copyright IMHC  22 

Conversely, the time to complete a finite element model in a commercial program 
(even by a skilled users) is substantially longer.  It strongly depends on the amount of 
pre and post processor macros, programs, and spreadsheets that the engineer has 
developed for the analysis processes. 

Before we developed PAX, we wrote a dedicated program for the pre and post 
processing portion of the ANSYS modelling.  Figure 21 shows the interface of this 
program. 

 

Figure 21. AC-Tek’s interface of ANSYS Pulley Maker 

The basic procedure for modelling a pully in ANSYS is: 

1. Draw the pulley in AutoCAD. Each part (i.e. shaft, locking device, end disk, and 
rim) is drawn as polyline.  The drawing is then saved as a DXF file. 

2. Import the DXF file into ANSYS Pulley Maker.  The program then takes the 
polyline and converts it into key points, lines, and areas. 

3. Set mesh size at each line or key point. 
4. Set material properties, loads, etc. 
5. Pulley Maker then writes an ANSYS input file.  This file is written in the APDL 

program language. 
6. Open ANSYS and read in geometry so that the mesh can be verified. 
7. Adjust meshing parameter to obtain desired mesh 
8. Repeat steps 6/7 until satisfied with mesh 
9. Pulley Maker then makes final ANSYS input file, which includes:  

a. pre-processing input 
b. boundary conditions 
c. loads including definition of the Fourier series 
d. solution steps 
e. combining the Fourier series load cases 
f. Post processing including plotting stresses at critical locations, bending 

moment and torque on shaft, loads on bending moments, shaft 
deflections, etc. 

After the analysis was complete, the report needed to be manually written. 
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Even with the ANSYS Pulley Maker interface, analysing a pulley normally takes at least 
3 to 4 hours.  Further, development of the Pulley Maker interface took a significant 
amount of effort and time. 

PAX however does it all; pre-processing, solution, post-processing, and report 
generation.  Since PAX was specifically written to analyse pulleys, the end user does 
not need extensive finite element experience and knowledge to analyse the pulley.  
The user can focus on designing the pulley, rather than all the intricacies of FEA 
analysis.  Post processing is completed internally, and the main results are summarised 
so they can be easily understood. 

PAX also has the added advantage of automatic report writing.  A professional report 
is automatically generated that can be sent to a client as needed. 

5.  2D AXISYMMETRIC ADVANTAGES 

The conclusion of the finite element modelling of a pulley with a full 3D element model 
versus a 2D axisymmetric model with non-axisymmetric loading is that both models 
give the same results.  However, the 2D axisymmetric model has the following 
advantages: 

Advantage #1:  The run time of the 2D model is much faster due to the ability to hyper-
thread the individual load cases.  It was found that a 2D axisymmetric model that has 
been hyperthreaded and optimised runs 15 to 30 times faster than a full 3D model.  
The PAX model also runs much faster than ANSYS 2D axis-symmetric model due to the 
hyperthreading of the solutions. 

Advantage #2:  The 2D model can be run on computer with less memory.  In fact, if 
one’s computer is somewhat limited in memory (i.e. less than 8 GB) a 3D model 
typically won’t converge due to lack of memory, or the run time may be excessively 
long.  Even if the computer has enough memory, the 2D model will be much faster 
due to the ability to have additional threads solving at the same time. 

Advantage #3: The 2D model has better visualisation of the fatigue stresses.  In the 3D 
model, the results show the stress at all locations.  However, in a pulley analysis, what 
is required are the stresses on the 360 degree rotation which has been reduced to 
alternating stress and mean stress.  From the alternating and mean stress, the 
Goodman ratio (fatigue stress) and Yield ratio (maximum stress / Yield Strength) can 
be calculated and plotted for easy visualisation.  For example, Figure 15 shows the 
stress in end disk of the 3D model.  If only the 3D stresses are avaible then the fatigue 
stress at a specific location must be manually calculated (or calculated using a macro).  
In figure 15 the maximum stress in the fillet is approximately 90 MPa and the minimum 
stress is approximately 35 MPa.  Note that the contours have been set to a maximum 
of 90 MPa so that maximum stress in the fillet can be seen.  The maximum stress 
(which is 220 MPa) occurs in the hub and is due to the locking device pressure. 

A further complication of calculating the fatigue von mises stress is that von mises 
fatigue stress must be calculated from the individual component stresses.  In other 
words, one cannot simply plot the von mises stress in 3D and then take the minimum 
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and maximum stress to obtain the alternating stress.  The correct fatigue stress 
formula is:  

𝜎𝑉𝑀−𝐴𝑙𝑡 = √
1

2
[(𝜎𝑥𝑎 − 𝜎𝑦𝑎)

2
+ (𝜎𝑦𝑎 − 𝜎𝑧𝑎)

2
+ (𝜎𝑧𝑎 − 𝜎𝑥𝑎)2 + 3(𝜏𝑥𝑦𝑎

2 + 𝜏𝑦𝑧𝑎
2 + 𝜏𝑧𝑥𝑎

2 )]
2

 

Where, for example, 𝜎𝑥𝑎 is the alternating stress of the x (or radial) stress in the 360 
degree rotation.  If the von mises stress is calculated at each location and then one 
assumes that the alternating stress is the maximum minus the minimum von mises 
stress, then the result will be incorrect.  Figure 22 shows the component and von mises 
stress at the maximum stress location in the inside fillet radius.  The plot shows that 
the maximum and minimum von mises stresses are 84 MPa and 20 MPa.  If the 
alternating stress is calculated from these two values, the alternating stress would be 
32 MPa.  However, this is incorrect.  The alternating stress must be calculated from 
the above formula, which shows that the alternating stress is 47.1 MPa (σxa=6.1, 
σya=4.1, σza=36.9, τxya=5.2, τxza=11.4, τyza=15.6).  In summary a 3D plot of von mises 
stress is insufficient to calculate the fatigue stress.  The alternating component 
stresses must be calculated and then the von mises alternating stress can be found.  
This is an easy calculation in a 2D axisymmetric analysis.  However, commercial 3D 
finite element packages do not typically have an easy way to do this.  As such this 
calculation will likely have to be externally determined from the finite element 
package which is both time consuming and quite tedious. 

 

Figure 22. Contour plots of fatigue stresses and failure ratios based on full 360° rotation 

With the 2D model, the fatigue stresses are easily computed and then plotted on the 
2D geometry.  Typical plots are: the maximum von mises stress, the alternating von 
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mises stress, the Goodman ratio, and the yield ratio at all critical locations.  
Component stresses (i.e. radial, hoop, and axial) can also be plotted as needed.  Figure 
23 shows these plots at the top inside fillet in the end disk.  From these plots, it is 
immediately known the fatigue stress levels.  Further, the maximum stress location is 
easily seen.  If the stresses are too high, then a geometry change can be made to 
reduce them to acceptable levels. 

  

  

Figure 23. Contour plots of fatigue stresses and failure ratios based on full 360° rotation (PAX) 

Advantage #4:  The pulley that was used in this paper had a relatively simple geometry 
and therefore a full 3D model was possible.  However, there are many pulley 
geometries that have much more complex geometries.  Take for example a pulley that 
has a partial penetration weld between the end disk and rim.  This is a very common 
pulley type, especially for low tension – fabric belt pulleys.  If a designer wants to 
analyse this geometry, a full 3D pulley analysis will be difficult due to the small element 
size needed at the inside weld fillet.  The gap distance between the rim and end disk 
is typically 1 mm to 3 mm.  This requires an element size of 0.25 mm to 0.5 mm (or 
smaller) at the inside fillet radius.  

 Figure 24 shows the geometry and element plot of such a pulley.  This pulley has a 500 
mm diameter.  The rim thickness is 22 mm.  The gap between the rim and end disk is 
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3 mm.  A partial penetration weld is completed between the end disk and rim.  The 
weld outside fillet is 10 mm.  The geometry assumes the gap length (inside edge of 
end disk to inside wall radius) is 12 mm. 

 

Figure 24. Low tension pulley with partial penetration weld between rim and end disk 

Figure 25 zooms into the weld geometry.  With the 2D axisymmetric model, it is easy 
to refine the elements.  The element length in the 3 mm inside radius is set at 0.25 
mm so that there are 38 elements in the 3 mm radius. 

 

 

Figure 25. Zoom into weld geometry 

The PAX model for this geometry solved in 22 seconds!  Figure 26 shows the resulting 
maximum and alternating von mises stress in the weld. 
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Maximum Stress Alternating Stress 

Figure 26. Alternating von mises stress in the weld (PAX) 

A 3D model was built in ANSYS.  The 3D model uses the 20-node element.  Note that 
the higher order 3D element (i.e. brick element with 20 nodes) is necessary due to 
elements that have extreme geometric aspect ratio.  Figure 27 shows 3D elements at 
the weld fillet.  ANSYS warns that 7% of the elements in the model have aspect ratios 
that are beyond recommended limits.  When a 3D model is used in such geometries, 
it will be important to check the results.  However, in a 2D axis-symmetric solution, 
this is not an issue. 

 

Figure 27. 3D elements at weld fillet (5 degree element rotation angle) 

Figure 28 shows both the PAX results and ANSYS 3D results. The figure shows the 
maximum stress in the weld fillet between the end disk and rim.  The ANSYS 3D model 
was run with angular element divisions of 10 degrees, 3 degrees, and 1 degree. 
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Figure 28. Von Mises stress at fillet weld between end disk and rim 

The results between the 2D axis-symmetric and 3D model are similar but not the same.  
Even among the different 3D models there is some differences.  The difference was 
enough that a second 3D model was made with smaller elements to obtain higher 
accuracy.  Figure 29 shows the refined 3D model with angular element divisions of 5 
degrees. 

 

Figure 29. Refined 3D elements at weld fillet (5 degree element rotation angle) 

Figure 30 shows the results of the refined meshed at the fillet weld.  Even though the 
aspect ratios of the 3D brick elements are even more extreme, the results have 
converged with the refined mesh.  For this model, the PAX solution again completed 
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in 22 seconds.  The refined 3D model with angular element divisions of 5 degrees ran 
in 845 seconds and the 3 degree model ran in 917 seconds (+15 minutes which is over 
40 times longer). 

 

Figure 30. Von Mises stress at fillet weld between end disk and rim with refined 3D model 

6. CONCLUSIONS 

This paper has described a new 3D finite element analysis tool (PAX) for analysing 
conveyor pulleys.  This method has been built into the Sidewinder conveyor design 
software.  PAX uses 2D axis-symmetric elements to accurately and efficiently model 
pulleys.  The 2D axis-symmetric analysis has been compared to full 3D finite element 
models.  The results are almost identical; however, the PAX software is much easier 
to use, substantially faster, and the results are specifically tailored for pulley analysis. 
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