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1. SUMMARY

In this paper a new finite element model of a belt-conveyor system will be introduced. This model has been
developed in order to be able to simulate both the longitudinal and transverse dynarnic response of the belt during
starting and stopping. Application of the model in the design stage of long overland belt-conveyor systems enables
the engineer, for example, to design proper belt-conveyor curves by detecting premature lifting of the belt off the
idlers. It also enables the design of optimal idler spacing and troughing configuration in order to ensure resonance-
free belt motion by determining (standing) longitudinal and transverse belt vibrations. Application of feed-back
control techniques enables the design of optimal starting and stopping procedures whereas an optimal belt can be

selected by taking the dynamic properties of the belt into account.

2, INTRODUCTION

The Netherlands has long been recognised as a country
in which transport and transhipment play a major role
in the economy. The port of Rotterdam, in particular is
known as the gateway to Europe and claims to have
the largest harbour system in the world, Besides the
large numbers of containers, a large volume of bulk
goods also passes through this port. Not all these goods
are intended for the Dutch market, many have other
destinations and are transhipped in Rotterdam. Good
examples of typical bulk goods that are transhipped are
coal and iron ore, a significant part of which is
intended for the German market. In order to handle the
bulk materials a wide range of different mechanical
conveyors including belt-conveyors is used.

The fength of most belt-conveyor systems
erected in the Netherlands is relatively small, since
they are mainly used for in-plant movement of bulk
materials. The longest belt-conveyor system, which is
about 2 km long, is situated on the Maasvlakte, part of
the port of Rotterdam, where it is used to transport coal
from a bulk terminal to an electricity power station. In
addition to domestic projects, an increasing number of
Dutch engineering consultancies participates in
international projects for the development of large
overland belt-conveyor systems. This demands the
understanding of typical difficulties encountered
during the development of these systems, which are
studied in the Department of Transport Technology of
the Faculty of Mechanical Engineering, Delft
University of Technology, one of the three Putch
Universities of Technology.

The interaction between the conveyor belt
properties, the bulk solids properties, the belt conveyor
configuration and the environment all influence the
level to which the conveyor-system meets its
predefined requirements. Some interactions cause
troublesome phenomena so research is initiated into
those phenomena which cause practical problems, [1].
One way to classify these problems is to divide them
into the category which indicate their underlying
causes in relation to the description of belt conveyors.

The two most important dynamic
considerations in the description of belt conveyors are
the reduction of transient siresses in non-stationary
moving belts and the design of belt-conveyor lay-outs
for resonance-free operation, [2]. In this paper a new
finite element model of a belt-conveyor system will be
presented which enables the simulation of the beit’s
longitudinal and fransverse response to starting and
stopping procedures and it’s motion during steady state
operation. It's beyond the scope of this paper to discuss
the results of the simulation of a start-up procedure of
a belt-conveyor systern, therefore an example will be
given which show some possibilities of the model.

3. FINITE ELEMENT MODELS OF
BELT-CONVEYOR SYSTEMS

If the total power supply, needed to drive a belt-
conveyor system, is calculated with design standards
like DIN 22101 then the belt is assumed to be an
inextensible body. This implies that the forces exerted
on the belt during starting and stopping can be derived
from Newtonien rigid body dynamics which yields the
belt stress. With this belt stress the maximum extension
of the belt can be calculated. This way of determining
the elastic response of the belt is called the quasi-static
(design) approach. For small belt-conveyor systems this
leads to an acceptable design and acceptable operational
behaviour of the belt. For long belt-conveyor systems,
however, this may lead to a poor design, high
maintenance costs, short conveyor-component life and
well known operational problems like :

o excessive large displacement of the weight of the
gravity take-up device

s premature collapse of the belt, mostly due to the
failure of the splices

* destruction of the pulleys and major damage of the
idlers

» lifting of the belt off the idlers which can result in
spillage of bulk material

e damage and malfunctioning of (hydrokinetic) drive
systems



Many researchers developed models in which the
elastic response of the belt is taken into account in order
to determine the phenomena responsible for these
problems. In most models the belt-conveyor model
consists of finite elements in order to account for the
variations of the resistance's and forces exerted on the
belt. The global elastic response of the belt is made up
by the elastic response of all its elements. These finite
element models have been applied in computer software
which can be used in the design stage of (long) belt-
conveyor systems. This is called the dynamic (design)
approach. Verification of the results of simulation has
shown that software programs based on these kind of
belt-models are quite successful in predicting the elastic
respense of the belt during starting and stopping, see
for example [3] and [4] .

The finite element models as mentioned above
determine only the longitudinal elastic response of the
belt. Therefore they fail in the accurate determination
of:

the motion of the belt over the idlers and the pulleys

the dynamic drive phenomena

the bending resistance of the belt

the development of (shock} stress waves

the interaction between the belt sag and the

propagation of longitudinal stress waves

the interaction between the idler and the belt

» the influence of the belt speed on the stability of
motion of the beit

o the dynamic stresses in the belt during passage of
the belt over a (driven) pulley

s the influence of parametric resonance of the belt
due to the interaction between vibrations of the take
up mass or eccentricities of the idlers and the
transverse displacements of the beit

¢ the development of standing transverse waves

the influence of the damping caused by bulk

material and by the deformation of the cross-

sectional area of the belt and bu]k material during

passage of an idler

o the lifting of the belt off the idlers in convex and.

concave curves

The transverse elastic response of the belt is often the
cause of breakdowns in long beit-conveyor systems and
should therefore be taken into account, The transverse
response of a belt can be determined with special
models as proposed in [5] and [6], but it is more
convenient to extend the present finite element models
with special elements which take this response into
account.
3.1 THE BELT

A typical belt-conveyor geometry consisting of a drive
pulley, a tail pulley, a vertical gravity take-up, a
number of idlers and a plate support is shown in Figure
1. This geometry is taken as an example to illustrate
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how a finite element model of a belt conveyor can be

developed when only the longitudinal elastic response
of the belt is of interest.

pulley support
idler support

plate support

Figure 1: Typical belt-conveyor geometry.

Since the length of the belt part between the drive
pulley and the take-up pulley, L, is negligible
compared to the length of the total bek, L, these
pulleys can mathematically be combined to one pulley
as long as the mass inertia's of the pulleys of the take-
up system are accounted for. Since the resistance
forces encountered by the belt during motion vary
from place to place depending on the exact local
(maintenance) conditions and geometry of the belt
conveyor, these forces are distributed along the length
of the belt. In order to be able to determine the
influence of these distributed forces on the motion of
the belt, the belt is divided into a number of finite
elements and the forces which act on that specific part
of the belt are allocated to the corresponding element,
If the interest is in the longitudinal elastic response of
the belt only then the belt is not discretised on those
places where it is supported by a pulley which does not
force its motion (slip possible). This is shown in Figure
2. The last step in building the model is to replace the
belt's drive and tensioning system by two forces which
represent the drive characteristic and the tension
forces. A more extended description of the process of
building a finite element model of a belt conveyor can
be found in [7].
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Figure 2: Belt divided into finite elements.

The exact interpretation of the finite elements depends
on which resistance's and influences of the interaction
between the belt and its supporting structure are taken
into account and the mathematical description of the

constitutive behaviour of the belt material. Depending - :

on this interpretation, the elements can be represented

)
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by a system of masses, springs and dashpots as is
shown in Figure 3, [9], where such a system is given
for one finite element with nodal points ¢ and c+1, The
springs K and dashpot H represent the visco-elastic
behaviour of the belt's tensile member, G represents
the belt's variable longitudinal geometric stiffness
produced by the vertical acting forces on the belt's
cross section between two idlers, C represents the
transitional static to dynamic {friction and V represent
the belts velocity dependent resistance's.

*—
[ c+1 c e+
K
. A 6 fer

Figure 3: Five element composite model [9].

3.1.1 NON LINEAR TRUSS ELEMENT

If only the longitudinal deformation of the belt is of
interest then a truss element can be used to model the
elastic response of the belt. A truss element as shown
in Figure 4 has two nodal points, p and g, and four
displacement parameters which determine the
component vector x:

X' = Elp v, u, vq] (n
For the in-plane motion of the truss element there are
three independent rigid body motions therefore one

deformation parameter remains which describes

Vy

y

€,

€

1 X
Figure 4: Definition of the displacements of a truss

element

the change of length of the axis of the truss element

[71:
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ds’ —ds;
g, =D, (x)= .[Wdﬁ (2)

where ds is the length of the undeformed element, ds

the length of the deformed element and & =2
dimensionless length coordinate along the axis of the
element.

Figure 5: Static sag of a tensioned belt

Although bending deformations are not included in the
trugs element, it is possible to take the static influence
of small values of the belt sag into account. The static
belt sag ratio is defined by (see Figure 5):

& ql
T=%r 3

K =
8T

where q is the distributed vertical load exerted on the
belt by the weight of the belt and the bulk material, 1
the idler space and T the belt tension. The effect of the
belt sag on the longitudinal deformation is determined

by [7]:

3
=—K? 4
e, =K @
which yields the total longitudinal deformation of the
non linear truss element:

g =Di(x)=¢, +5, &)
3.2 BEAM ELEMENT

y

eZ

el X

Figure 6: Definition of the nodal point displace-ments
and rotations of a beam element.



If the transverse displacement of the belt is being -of
interest then the belt can be modelled by a beam
element. Also for the in-plane motion of a beam
element, which has six displacement parameters, there
are three independent rigid body motions. Therefore
three deformation parameters remain: the longitudinal
deformation parameter, €, and two bending

deformation parameters, €, and &;.

Figure 7: The bending deformations of a beam
element.

The bending deformation parameters of the beam
element can be defined with the component vector of
the beam element (see Figure 6):

T

X ——-[1.1p v, M, u v, uq] (6)

and the deformed configuration as shown in Figure 7:
el

g,=D,(x)= —11-"5-

. Y
~€, Bq

g, =D (x)= I

3.2 THE MOVEMENT OF THE BELT
OVER IDLERS AND PULLEYS

The movement of a belt is constrained when it moves
over an idler or a pulley. In order to account for these
constraints, constraint {boundary) conditions have to
be added to the finite element description of the belt.
This can be done by using multi-body dynamics. The
classic description of the dynamics of multi-body
mechanisms is developed for rigid bodies or rigid links
which are connected by several constraint conditions.
In a finite element description of a (deformable)
conveyor belt, where the belt is discretised in a number
of finite elements, the links between the elements are
deformable. The finite elements are connected by
nodal points and therefore share displacement
parameters. To determine the movement of the belt,
the rigid body modes are eliminated from the
deformation modes. If a belt moves over an idler then
the length coordinate £, which determines the position
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of the belt on the idler, see Figure 8, is added to the
component vector, eq. (6), thus resulting in a vector of -
seven displacement parameters.

idler
£ : belt
p - i = - - -
Iy i
[ -
A
e
(0.0) 91.!- X

Figure 8: Belt supported by an idler.

There are two independent rigid body motions for an
in-plane supported beam element therefore five
deformation parameters remain. Three of them, &y, &,

and g5 , determine the deformation of the belt and are
already given in 3.1, The remaining two, &, and &5,

determine the interaction between the belt and the
idler, see Figure 9.

Figure 9: FEM beam element with two constraint
conditions.

These deformation parameters can be imagined as
springs of infinite stiffness. This implies that:

£4=D4(x)=(r§+u€)e2—rm.e2=0 ®
g, =D(x)= (ré +u§) e -r,e=0

If during simulation €, > 0 then the belt is lifted off the
idler and the constraint conditions are removed from
the finite element description of the belt.

3.3 THE ROLLING RESISTANCE

In order to enable application of a model for the rolling
resistance in the finite element model of the belt
conveyor an approximate formulation for this
resistance has been developed, {8]. Components of the -
total rolling resistance which is exerted on a belt



during motion three parts that account for the major
part of the dissipated energy, can be distinguished
including: the indentation rolling resistance, the inertia
of the idlers (acceleration rolling resistance) and the
resistance of the bearings to rotation (bearing
resistance). Parameters which determine the rolling
resistance factor include the diameter and material of
the idlers, belt parameters such as speed, width,
material, tension, the ambient temperature, lateral belt
load, the idler spacing and trough angle. The total
rolling resistance factor that expresses the ratio
between the total rolling resistance and the vertical belt
load can be defined by:

fo=f+f+1, ©

where f; is the indentation rolling resistance factor, f,
the acceleration resistance factor and f,, the bearings
resistance factor. These components are defined by:

f=CEh"D ™V K T"

2
m_ du

" Eb at’
M

f

(10) .

- Fbr

L]

where F, is distributed vertical belt and bulk material

load, h the thickness of the belt cover, D the idler
diameter, V, the belt speed, Ky the nominal percent

belt load, T the ambient temperature, m,.4 the reduced

mass of an idler, b the belt width, u the longitudinal
displacement of the belt, M, the total bearing resistance

moment and r; the infernal bearing radius. The

dynamic and mechanic properties of the belt and belt
cover material play an important role in the calculation
of the rolling resistance. This enables the selection of
belt and belt cover material which minimise the energy
dissipated by the rolling resistance.

34 THE BELT’S DRIVE SYSTEM

To enable the determination of the influence of the
rotation of the components of the drive system of a belt
conveyor, as shown in Figure 10, on the stability of
motion of the belt, 2 model of the drive system is
included in the total model of the belt conveyor. The
transition elements of the drive system, as for example
the reduction box, are modelled with constraint
conditions as described in section 3.2. A reduction box
with reduction ratio i can be modelled by a
reductionbox element with two displacement
parameters, wu, and g one rigid body motion

(rotation) and therefore one deformation parameter :

sM=Dm(x)=iup+uq=0 )

e )
Static Power Converter

—_—
Induetion motor

¥ [}
EFluid coupling [ |Emtrolled Stare Transmission
|

E——— l

Disk brake
I : i
Reduction b * Dri
uction box Drive pulley |

Figure 10: Possible components of the drive system of
belt conveyors.

To determine the electrical torque of an induction
machine, the so-called two axis representation of an
electrical machine is adapted, see Figure 11, [7]. The
vector of phase voltages v can be obtained from:

al
= Ri Gi+L—
v i+o Gi+ at (12)
isqtausﬁl
| a,
\ .
Upg "::'\I
I Ugy
1 |
L |

Figure 11: Two axis representation of induction motor
in stator coordinates.

In eq. (11) i is the vector of phase currents, R the
matrix of phase resistance's, G the matrix of inductive
phase resistance's, L the matrix of phase inductance's
and w, the electrical angular velocity of the rotor. The
electro-magnetic torque is equal to:

T, =i'Gi

e

(13)

The connection of the motor model and the mechanical
components of the drive system is given by the
equations of motion of the drive system:

&g,
T =122

2]
=l5a +C, —*

- (14)

+K,0,

where T is the torque vector, I the inertia matrix, C the
damping matrix, K the stiffhess matrix and ¢ the angle
of rotation of the drive component axis's.

To simulate a controlled start or stop
procedure a feedback routine can be added to the



model of the belt's drive system in order to control the
drive torque.

35 THE EQUATIONS OF MOTION

The equations of motion of the total belt conveyor

model can be derived with the principle of virtual
power which leads to [7]:

%
fk -M, atzl T-GiD

(15)

ik

where f is the vector of resistance forces, M the mass
matrix and o the vector of multipliers of Lagrange
which may be interpret as the vector of stresses dual to
the vector of strains £. To arrive at the solution for x
from this set of equations, integration is necessary.
However the results of the integration have to satisfy
the constraint conditions. If the zero prescribed strain
components of for example eq. (8) have a residual
value then the results of the integration have to be
corrected, also see {7]. It is possible to use the feed-
back option of the model for example to restrict the
vertical movement of the take-up mass. This inverse
dynamic problem can be formulated as follows. Given
the model of the belt and its drive system, the motion
of the take-up system known, determine the motion of
the remaining elements in terms of the degrees of
freedom of the system and its rates. It is beyond the
scope of this paper to discuss all the details of this
option.
3.6 EXAMPLE

Application of the FEM in the design stage of long belt
conveyor systems enables its proper design. The
selected belt strength, for example, can be minimised
by minimising the maximum belt tension using the
simulation resulis of the model. As an example of the
features of the finite element model, the transverse
vibration of a span of a stationary moving belt
between two idler stations will be considered. This
shouid be determined in the design stage of the
conveyor in order to ensure resonance free belt
support.

‘ The effect of the interaction between idlers
and a moving belt is important in belt-conveyor
design. Geometric imperfections of idlers and pulleys
cause the belt on top of these supports to be displaced,
yielding a transverse vibration of the belt between the
supports. This imposes an alternating axial stress
component in the belt. If this component is small
compared to the pre-stress of the belt then the belt will
vibrate in it's natural frequency, otherwise the belt's
vibration will follow the imposed excitation. The belt
can for example be excitated by an eccentricity of the
idlers. This kind of vibrations is particularly noticeable
on belt conveyor returns. Since the frequency of the
imposed excitation depends on the angular speed of the
pulleys and idlers, and thus on the belt speed, it is

-6-

important to determine the influence of the belt speed
on the natural frequency of the transverse vibration of
the belt between two supports. If the frequency of the
imposed excitation approaches the natural frequency of
fransverse vibration of the belt, resonance phenomena
oceur,

The results of simulation with the finite
element model can be used to determine the frequency
of transverse vibration of a stationary moving belt
span. This frequency is obtained after transformation
of the results of the transverse displacement of the belt
span from the time domain to the frequency domain
using the fast fourier technique. Besides using the
finite element model also an analytical approach can
be used. :
The belt can be modelled as a pre-stressed
beam. If the bending stiffness of the belt is negiected,
the transverse displacements are small compared to the
idler space, K <<I, and the increase of the belt length

due to the fransverse displacement is negligible
compared to its initial length, the transverse vibration

~ of the belt can be approximated by the following linear

differential equation, also see Figure 3:

v, ,] &v v
Et—2—=(cz Y ax’ %, %Gt 16)

where v is the transverse displacement of the belt and
¢y the wave speed of the transverse waves defined by,

(1l

gl
8K,
The first natural transverse frequency of the belt span

of Figure 5 can be obtained from eq. (16) if it is
assumed that v(0,t)=v(L,t)=0 :

(17

¢,

f, =icz(1-51) (18)

where [} is the dimensionless speed ratio defined by:
=== (19)

The frequency f, is different for each individual belt
span since the belt tension varies over the length of the
conveyor. The excitation frequency of an idler which
has a single eccentricity is equal to:

Vh
f=—r 20)

mD
where D is the diameter of the idler. In order to design
a resonance free belt support the idler space is
subiected to the following condition:



nD
L#——1a _p?
¢2B(1 B’) @1)

The results obtained with the linear differential
equation (16) however are valid only for low values of
the ratio . For higher values of B, as is the case for
high-speed conveyors or low belt tensions, the non-
linear terms in the full form of eq. (16) become
significant. Therefore numerical simulations using the
FEM model have been made in order to determine the
ratio between the linear (eq. 18) and the non-linear
frequency of transverse vibration of a belt span . These
relations have been determined for different values of
B as a function of the sag ratio K,. After numerical

simulation a result as shown in Figure 12 was
obtained.

&0

40
4
time x10 [s]

Flgure 12: Longitudinal displacements of nodal points
of a finite element model of a conveyor belt.

The results for the transverse displacements were
transformed to a frequency spectrum using a fast-
fourier technique. The frequencies obtained from these
spectra were compared to the frequencies obtained
from eq. (18} which yielded the curves as shown in
Figure 13. From this figure it follows that for f smaller
that 0.3 the calculation errors are small. For higher
values of B the calculation error made by a linear
approximation is more than 10 %. Application of a
finite element model of the belt which uses non-linear

beam elements therefore enables an accurate
determination of the transverse vibrations for high
values of p.

For lower values of P the frequencies of
trangverse vibration can also be predicted accurate by
eq. (18). However it is not possible to analyse, for
example, the interaction beiween the belt sag and the
propagation of longitudinal waves or the lifting of the
belt off the idlers as can be done with the finite
element model.

The determined relation between the belt

stress and the frequency of transverse vibrations can
also be used in belt tension monitoring systems.

0.95 5=0.0
.ot p=0.3
. . 0.85]
lin.freq./non-fin.freq. [
0.8¢ p=0.8
0.75¢
0.7
0.65
06 p=08
0.55¢
- f=0.95

053 T

static sag ratio K; [%]

02 04 12 14 18

Figure 13: Ratio between the linear and the non-linear
Jreguency of transverse vibration of a belt span
supported by two idlers.

4, EXPERIMENTAL VERIFICATION

In order to be able to verificate the results of the

simulations, experiments have been carried out with
the dynamic test facility shown in Figure 14,

Eucuustic distance recorder

idler spacal: 0.B-1.5

drive

5 System

k-;-hr.u.

U A P A A f T e

Figure 14: Dynamic test facility.

With this test facility the transverse vibration of an
unloaded flat belt span between two idlers, as for
example a return part, can be determined. An acoustic
device is used to measure the displacement of the belt.
Besides that, also the tensioning force, belt speed,
motor torgue, idler rotations and idler space were
known during the experiments. Some results of the
experiments are shown in the Figures 15 and 16
Figure 15 shows the relation between the natural
frequency of transverse vibration of a belt span and the
belt speed as measured during the experiments,
calculated by eq. (18), with and without speed
dependency, thus neglecting the term B in ¢q. (18), and
obtained from the numerical simulations. In the
Figures 16 the frequencies are given as a function of B
instead of Vy to enable comparison with the results
shown in Figure 13, Figure 16a and b show the errors
made by the calculations as compared to the result of
the experiments. Also from these figures it can be
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learned that for § above 0.3 the linear approximations
are no longer accurate.

12
‘ frequency [Hz]

baltspeed [m/s)

Figure 15: Measured (cross marks) and calculoted
Jrequencies of transverse vibration of a supported belt
part. (linear speed independent model (dotted line),
linear speed dependent model (solid line ) and non-
linear model (dash-dot line))

calculation eor[%] OE=
-10

20}
30t
40t

K.=05%
0 2 .04 0.6 08 1
Bl

-5C

Figure 16a: Calculation errors made by calculation of
the frequencies of transverse vibration of a supported
belt part with the linear speed independent model
{dotted line), linear speed dependent model (solid line
) and non-linear model (dash-dot line) for K.=0.5 %.

50

K.=1.0 %

] 02 0.4 0.6 0.8 1
BEl

Figure 16b: Calculation errors made by calculation of
the frequencies of transverse vibration of a supported
belt part with the linear speed independent model
{dotted line), linear speed dependent model (solid line
) and non-linear model {dash-dot line) for K =1.0 %.

5. EXAMPLE

Since the most cost-effective operation conditions of
belt conveyors occur in the range of belt widths 0.6 -
1.2 m ,[2], the belt's capacity can be varied by varying
the belt speed. However before the belt speed is varied
the interaction between the belt and the idler should be
determined in order to ensure resonance free belt
support. To illustrate this the transverse displacement
of a stationary moving belt span between two idlers

~ have been measured. The total belt length L was 52.7

m, the idler space | was 3.66 m, the static sag ratio K,
2.1 %, B was 0.24 and the belt speed V|, 3.57 m/s.
Figure 17 shows the ratio between the transverse

displacement and the static belt sag as a function of
time.

transverse
displacemant
ratio [%]

(=]

2r

-3

0 1 2 3 4 5 8
time [s]

Figure I7: Transverse vibration of a stationary
moving belt span supported by two idlers.

After transformation of this signal by a fast fourier
technique the frequency spectrum of Figure 18 was
obtained. In Figure 18 three frequencies appear. The
first frequency is caused by the passage of the belt
splice:

VIJ
f,=—"=006711z : (22)

The second frequency, which appears at 1.94 Hz, is
caused by the transverse vibration of the belt .

1
gX

ar

spactral density {-] 7

2
1 LILJJL
L
% 5 10 15 20
frequency [Hz]
Figure 18: Frequencies of transverse vibration of a

stationary moving belt span supported by two idlers.



The third frequency which appears at 10.5 Hz is
caused by the rotation of the idlers. From the
numerical simulations Figure 19 was obtained.

10 -
9 m\ 1:0=0.0835m

D088 Ky=5%
g 30=0159m

K, 2 138.5
7 Ko=4%

idlerspace[m] B
s Ke=3%
4 X
sl \&x Ke=2%
2L Ke 1%
1
————

0 — .

0.5 1 3 3.5 4

a

1.5 2

25
belspead [m/s]

Figure 19: Colculated resonance zone's for different
idler diameters D. Cross indicates belt speed and idler
space during experiment,

Figure 19 shows the zone's where resonance caused by
the belt/idler interaction may be expected for three
idler diameters. The idlers of the belt conveyor had a
diameter of 0.108 m thus resonance phenomena may
be expected nearby a belt speed of 0.64 m/s. To check
this, the maximum transverse displacement of the belt
span has been measured during a statt-up of the
CONVeyor.

3
0=0.108 m

25
standard deviation
af amplitude ratie [%) 2

1.5

1

0.5

0

0 1.5 2

battsp;ed [rvs] ' .
Figure 20: Measured ratio of the standard deviation of
the amplitude of transverse vibration and the static
belf sag

0.5

As can be seen in Figure 20 the maximum amplitude
of the transverse vibration occur at a belt speed of 0.64
m/s as was predicted by the results of simulation with
the finite element model. Therefore the belt speed”
should not be chosen nearby 0.64 m/s. Although a flat
belt is used for the experiments and the theoretical
verification, the applied techniques can also be used
for troughed belts.

6. CONCLUSIONS

Application of beam elements in finite element models
of belt conveyors enable the simulation of the
transverse displacement of the beli thus enabling the
design of resonance free belt supports. The advantage
of applying beam elements for small values of B
instead of using a linear differential equation to predict
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resonance phenomena is that also the interaction
between the longitudinal and transverse displacement
of the belt and the lifting of the belt off the idlers can
be predicted from simulation.
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